liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
PIC simulation study of the interaction between a relativisticallymoving leptonic micro-cloud and ambient electrons.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Medie- och Informationsteknik. Linköpings universitet, Tekniska fakulteten. (Scientific Visualization)ORCID-id: 0000-0003-4055-0552
Queen's University Belfast. BT7 1NN, Belfast, United Kingdom. (Centre for Plasma Physics)
University of Amsterdam, 1098 XH Amsterdam, The Netherlands. (Anton Pannekoek Institute for Astronomy / GRAPPA)
Queen's University Belfast, BT7 1NN, Belfast, United Kingdom. (Centre for Plasma Physics)
Vise andre og tillknytning
2015 (engelsk)Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 577, nr A137, s. 1-10Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas.

Aims. Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. The cloud size is comparable to that created in recent laboratory experiments and such clouds may exist close to internal and external shocks of leptonic jets. The purpose of our study is to determine the prevalent instabilities, their ability to generate electromagnetic fields and the mechanism, by which the lepton micro-cloud transfers energy to the background plasma.

Methods. A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The latter consists of electrons with a temperature of 1 keV and immobile ions. The initially charge- and current neutral micro-cloud has a temperature of 100 keV and a side length of 2.5 plasma skin depths of the micro-cloud. The side length is given in the reference frame of the background plasma. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times.

Results. A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts the peak magnetic field amplitude. The current density and the moduli of the electromagnetic fields grow aperiodically in time and steadily along the direction that is anti-parallel to the cloud’s velocity vector. The micro-cloud remains conjoined during the simulation. The instability induces an electrostatic wakefield in the background plasma.

Conclusions. Relativistic clouds of leptons can generate and amplify magnetic fields even if they have a microscopic size, which implies that the underlying processes can be studied in the laboratory. The interaction of the localized magnetic field and high-energy leptons will give rise to synchrotron jitter radiation. The wakefield in the background plasma dissipates the kinetic energy of the lepton cloud. Even the fastest lepton micro-clouds can be slowed down by this collisionless mechanism. Moderately fast charge- and current neutralized lepton micro–clouds will deposit their energy close to relativistic shocks and hence they do not constitute an energy loss mechanism for the shock.

sted, utgiver, år, opplag, sider
EDP Sciences, 2015. Vol. 577, nr A137, s. 1-10
Emneord [en]
PIC simulations, lepton clouds
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-117985DOI: 10.1051/0004-6361/201424797ISI: 000357345900089OAI: oai:DiVA.org:liu-117985DiVA, id: diva2:812671
Tilgjengelig fra: 2015-05-19 Laget: 2015-05-19 Sist oppdatert: 2017-12-04bibliografisk kontrollert

Open Access i DiVA

fulltext(969 kB)164 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 969 kBChecksum SHA-512
2a0a5709341cd74027c21b98ebaa4cceff60d4ab618c2894797cf415880ea6636a99309f8d6d5dbb0eac1141d9d5acfeb6519f22960a3f62a988a0e78a1af9c2
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Dieckmann, Mark Eric

Søk i DiVA

Av forfatter/redaktør
Dieckmann, Mark Eric
Av organisasjonen
I samme tidsskrift
Astronomy and Astrophysics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 164 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 203 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf