liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Indirect Evaluation by Simulation of a Bayesian Network
Linköpings universitet, Institutionen för datavetenskap, Statistik. Linköpings universitet, Filosofiska fakulteten. Polismyndigheten - Nationellt Forensiskt Centrum.
Statens Kriminalteksniska Laboratorium.
Polismyndigheten - Nationellt Forensiskt Centrum.
Polismyndigheten - Natinellt Forensiskt Centrum.
Visa övriga samt affilieringar
2014 (Engelska)Konferensbidrag, Poster (med eller utan abstract) (Övrigt vetenskapligt)
Abstract [en]

Evidence evaluation when addressing source level propositions is usually done by comparing a piece of recovered material from (specimens of) control material. When the control material source is not available for taking specimens or for investigating it in its entirety, we must stick to photographs or video take-ups for making comparisons. An example is the comparison of class characteristics between a recovered footwear print and a picture of a seized shoe, where the evaluation is occasionally made that way. However, this way of pursuing the investigation is due to needs of quick answers, when there is no or little time to send in the entire footwear for the comparison. Moreover, the pictures taken of the sole of the seized footwear are taken by the police under controlled conditions and with high quality equipment.

When the suspected source is captured on a lower quality video take-up and the recovered material consists of fragments from the original body of material – for instance fire debris – the comparison with the control material source is naturally more difficult. In this paper we present a case where the question is whether recovered fire debris originate from a piece of garment captured on a CCTV take-up. We show how a likelihood ratio for the two propositions can be indirectly obtained from a classification of the source of the fire debris, by using a Bayesian network model. Results from fire debris analysis as well as the results from image comparisons can be evaluated against propositions of class and the updating of the class node for fire debris propagates back to the propositions for source.

Feeding the network with uniform priors for the class nodes we show how simulation can be used to obtain the correct level of the likelihood ratio for further reporting.

Ort, förlag, år, upplaga, sidor
2014.
Nyckelord [en]
Bayesian networks, trace evidence, digital evidence
Nationell ämneskategori
Sannolikhetsteori och statistik Juridik och samhälle
Identifikatorer
URN: urn:nbn:se:liu:diva-118548OAI: oai:DiVA.org:liu-118548DiVA, id: diva2:815466
Konferens
9th International Conference on Forensic Inference and Statistics (ICFIS2014)
Tillgänglig från: 2015-06-01 Skapad: 2015-06-01 Senast uppdaterad: 2015-06-01

Open Access i DiVA

Fulltext saknas i DiVA

Personposter BETA

Nordgaard, Anders

Sök vidare i DiVA

Av författaren/redaktören
Nordgaard, Anders
Av organisationen
StatistikFilosofiska fakulteten
Sannolikhetsteori och statistikJuridik och samhälle

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 109 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf