liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Electronic polymers in lipid membranes
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska högskolan.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för klinisk och experimentell medicin, Avdelningen för cellbiologi. Linköpings universitet, Medicinska fakulteten.ORCID-id: 0000-0001-8493-0114
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, nr 11242Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Electrical interfaces between biological cells and man-made electrical devices exist in many forms, but it remains a challenge to bridge the different mechanical and chemical environments of electronic conductors (metals, semiconductors) and biosystems. Here we demonstrate soft electrical interfaces, by integrating the metallic polymer PEDOT-S into lipid membranes. By preparing complexes between alkyl-ammonium salts and PEDOT-S we were able to integrate PEDOT-S into both liposomes and in lipid bilayers on solid surfaces. This is a step towards efficient electronic conduction within lipid membranes. We also demonstrate that the PEDOT-S@alkyl-ammonium: lipid hybrid structures created in this work affect ion channels in the membrane of Xenopus oocytes, which shows the possibility to access and control cell membrane structures with conductive polyelectrolytes.

Ort, förlag, år, upplaga, sidor
Nature Publishing Group, 2015. Vol. 5, nr 11242
Nationell ämneskategori
Biofysik
Identifikatorer
URN: urn:nbn:se:liu:diva-120045DOI: 10.1038/srep11242ISI: 000356090400002PubMedID: 26059023OAI: oai:DiVA.org:liu-120045DiVA, id: diva2:840009
Anmärkning

Funding Agencies|Knut and Alice Wallenberg Foundation; Swedish Research Council

Tillgänglig från: 2015-07-06 Skapad: 2015-07-06 Senast uppdaterad: 2018-01-25
Ingår i avhandling
1. Self-doped Conjugated Polyelectrolytes for Bioelectronics Applications
Öppna denna publikation i ny flik eller fönster >>Self-doped Conjugated Polyelectrolytes for Bioelectronics Applications
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Self-doped conjugated polyelectrolytes (CPEs) are a class of conducting polymers constituted of a π-conjugated backbone and charged side groups. The ionic groups provide the counterions needed to balance the charged species formed in the CPEs backbones upon oxidation. As a result, addition of external counterions is not required, and the CPEs can be defined as selfdoped. The combination of their unique optical and electrical properties render them the perfect candidates for optoelectronic applications. Additionally, their “soft” nature provide for the mechanical compatibility necessary to interface with biological systems, rendering them promising materials for bioelectronics applications. CPEs solubility, aggregation state, and optoelectronic properties can be easily tuned by different means, such as blending or interaction with oppositely charged species (such as surfactants), in order to produce materials with the desired properties. In this thesis both the strategies have been explored to produce new functional materials that can be deposited to form a thin film and,  therefore, used as an active layer in organic electrochemical transistors (OECTs). Microstructure formation of the films as well as influence on devices operation and performance have been investigated. We also show that these methods can be exploited to produce materials whose uniquecombination of self-doping ability and hydrophobicity allows incorporation into the phospholipid double layer of biomembranes, while retaining their properties. As a result, self-doped CPEs can be used both as sensing elements to probe the physical state of biomembranes, and as functional ones providing them with new functionalities, such as electrical conductivity. Integration of conductive electronic biomembranes into OECTs devices has brought us one step forward on the interface of manmade technologies with biological systems.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2016. s. 68
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1802
Nationell ämneskategori
Materialkemi Textil-, gummi- och polymermaterial Oorganisk kemi Annan materialteknik Polymerkemi
Identifikatorer
urn:nbn:se:liu:diva-132731 (URN)10.3384/diss.diva-132731 (DOI)9789176856451 (ISBN)
Disputation
2016-12-15, Plank, Fysikhuset, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-11-21 Skapad: 2016-11-21 Senast uppdaterad: 2019-10-29Bibliografiskt granskad
2. On decoration of biomolecular scaffolds with a conjugated polyelectrolyte
Öppna denna publikation i ny flik eller fönster >>On decoration of biomolecular scaffolds with a conjugated polyelectrolyte
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Biotemplating is the art of using a biological structure as a scaffold which is decorated with a functional material. In this fashion the structures will gain new functionalities and biotemplating offers a simple route of mass-producing mesoscopic material with new interesting properties. Biological structures are abundant and come in a great variety of elaborate and due to their natural origin they could be more suitable for interaction with biological systems than wholly synthetic materials. Conducting polymers are a novel class of material which was developed just 40 years ago and are well suited for interaction with biological material due to their organic composition. Furthermore the electronic properties of the conducting polymers can be tuned giving rise to dynamic control of the behavior of the material. Self-assembly processes are interesting since they do not require complicated or energy demanding processing conditions. This is particularly important as most biological materials are unstable at elevated temperatures or harsh environments. The main aim of this thesis is to show the possibility of using self-assembly to decorate a conducting polymer onto various biotemplates. Due to the intrinsic variety in charge, size and structure between the available natural scaffolds it is difficult, if not impossible, to find a universal method.

In this thesis we show how biotemplating can be used to create new hybrid materials by self-assembling a conducting polymer with biological structures based on DNA, protein, lipids and cellulose, and in this fashion create material with novel optical and electronic properties.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2017. s. 51
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1885
Nationell ämneskategori
Polymerkemi
Identifikatorer
urn:nbn:se:liu:diva-141675 (URN)10.3384/diss.diva-141675 (DOI)9789176854372 (ISBN)
Disputation
2017-10-19, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF)Knut och Alice Wallenbergs Stiftelse
Tillgänglig från: 2017-10-04 Skapad: 2017-10-04 Senast uppdaterad: 2019-10-11Bibliografiskt granskad

Open Access i DiVA

fulltext(1388 kB)211 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1388 kBChecksumma SHA-512
1a10b03df4dcea4d38636f7538a6a1b42883dcd063e817da50048f8ca37328415ba24218f1bda913a5255ff0871f1f7933b130ee61060ffda3393797693240ea
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Johansson, PatrikJullesson, DavidElfwing, AndersLiin, SaraMusumeci, ChiaraZeglio, EricaElinder, FredrikSolin, NiclasInganäs, Olle

Sök vidare i DiVA

Av författaren/redaktören
Johansson, PatrikJullesson, DavidElfwing, AndersLiin, SaraMusumeci, ChiaraZeglio, EricaElinder, FredrikSolin, NiclasInganäs, Olle
Av organisationen
Biomolekylär och Organisk ElektronikTekniska högskolanTekniska fakultetenAvdelningen för cellbiologiMedicinska fakulteten
I samma tidskrift
Scientific Reports
Biofysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 211 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 413 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf