liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Protein nanowires with conductive properties
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Journal of Materials Chemistry C, ISSN 2050-7526, E-ISSN 2050-7534, Vol. 3, nr 25, s. 6499-6504Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Herein we report on the investigation of self-assembled protein nanofibrils functionalized with metallic organic compounds. We have characterized the electronic behaviour of individual nanowires using conductive atomic force microscopy. In order to follow the self assembly process we have incorporated fluorescent molecules into the protein and used the energy transfer between the internalized dye and the metallic coating to probe the binding of the polyelectrolyte to the fibril.

Ort, förlag, år, upplaga, sidor
Royal Society of Chemistry , 2015. Vol. 3, nr 25, s. 6499-6504
Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
URN: urn:nbn:se:liu:diva-120179DOI: 10.1039/c5tc00896dISI: 000356529100010OAI: oai:DiVA.org:liu-120179DiVA, id: diva2:841380
Anmärkning

Funding Agencies|Knut and Alice Wallenberg Foundation through a Wallenberg Scholar grant

Tillgänglig från: 2015-07-13 Skapad: 2015-07-13 Senast uppdaterad: 2017-12-04
Ingår i avhandling
1. Preparation and Application of Functionalized Protein Fibrils
Öppna denna publikation i ny flik eller fönster >>Preparation and Application of Functionalized Protein Fibrils
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Many proteins have an innate ability to self-assemble into fibrous structures known as amyloid fibrils. From a material science perspective, fibrils have several interesting characteristics, including a high stability, a distinct shape and tunable surface properties. Such structures can be given additional properties through functionalization by other compounds such as fluorophores. Combination of fibrils with a function yielding compound can be achieved in several ways. Covalent bond attachment is specific, but cumbersome. External surface adhesion is nonspecific, but simple. However, in addition, internal non-covalent functionalization is possible. In this thesis, particular emphasis is put on internal functionalization of fibrils; by co-grinding fibril forming proteins with a hydrophobic molecule, a protein-hydrophobic compound molecule composite can be created that retains the proteins innate ability to form fibrils. Subsequently formed fibrils will thus have the structural properties of the protein fibril as well as the properties of the incorporated compound. The functionalization procedures used throughout this thesis are applicable for a wide range of chromophores commonly used for organic electronics and photonics. The methods developed and the prepared materials are useful for applications within optoelectronics as well as biomedicine.

Regardless of the methodology of functionalization, using functionalized fibrils in a controlled fashion for material design requires an intimate understanding of the formation process and knowledge of the tools available to control not only the formation but also any subsequent macroscale assembly of fibrils. The development and application of such tools are described in several of the papers included in this thesis. With the required knowledge in hand, the possible influence of fibrils on the functionalizing agents, and vice versa, can be probed. The characteristic traits of the functionalized fibril can be customized and the resulting material can be organized and steered towards a specific shape and form. This thesis describes how control over the process of formation, functionalization and organization of functionalized fibrils can be utilized to influence the hierarchical assembly of fibrils – ranging from spherical structures to  spirals; the function – fluorescent or conducting; and macroscopic properties – optical birefringence and specific arrangement of functionalized fibrils in the solid state. In conclusion, the use of amyloid fibrils in material science has great potential. Herein is presented a possible route towards a fully bottom up approach ranging from the nanoscale to the macroscale.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2015. s. 70
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1695
Nationell ämneskategori
Cell- och molekylärbiologi Fysikalisk kemi Fysikalisk kemi
Identifikatorer
urn:nbn:se:liu:diva-121022 (URN)978-91-7685-978-0 (ISBN)
Disputation
2015-09-11, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2015-09-02 Skapad: 2015-09-02 Senast uppdaterad: 2018-01-11Bibliografiskt granskad
2. On decoration of biomolecular scaffolds with a conjugated polyelectrolyte
Öppna denna publikation i ny flik eller fönster >>On decoration of biomolecular scaffolds with a conjugated polyelectrolyte
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Biotemplating is the art of using a biological structure as a scaffold which is decorated with a functional material. In this fashion the structures will gain new functionalities and biotemplating offers a simple route of mass-producing mesoscopic material with new interesting properties. Biological structures are abundant and come in a great variety of elaborate and due to their natural origin they could be more suitable for interaction with biological systems than wholly synthetic materials. Conducting polymers are a novel class of material which was developed just 40 years ago and are well suited for interaction with biological material due to their organic composition. Furthermore the electronic properties of the conducting polymers can be tuned giving rise to dynamic control of the behavior of the material. Self-assembly processes are interesting since they do not require complicated or energy demanding processing conditions. This is particularly important as most biological materials are unstable at elevated temperatures or harsh environments. The main aim of this thesis is to show the possibility of using self-assembly to decorate a conducting polymer onto various biotemplates. Due to the intrinsic variety in charge, size and structure between the available natural scaffolds it is difficult, if not impossible, to find a universal method.

In this thesis we show how biotemplating can be used to create new hybrid materials by self-assembling a conducting polymer with biological structures based on DNA, protein, lipids and cellulose, and in this fashion create material with novel optical and electronic properties.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2017. s. 51
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1885
Nationell ämneskategori
Polymerkemi
Identifikatorer
urn:nbn:se:liu:diva-141675 (URN)10.3384/diss.diva-141675 (DOI)9789176854372 (ISBN)
Disputation
2017-10-19, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Stiftelsen för strategisk forskning (SSF)Knut och Alice Wallenbergs Stiftelse
Tillgänglig från: 2017-10-04 Skapad: 2017-10-04 Senast uppdaterad: 2019-10-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Elfwing, AndersBäcklund, FredrikMusumeci, ChiaraInganäs, OlleSolin, Niclas

Sök vidare i DiVA

Av författaren/redaktören
Elfwing, AndersBäcklund, FredrikMusumeci, ChiaraInganäs, OlleSolin, Niclas
Av organisationen
Biomolekylär och Organisk ElektronikTekniska fakulteten
I samma tidskrift
Journal of Materials Chemistry C
Biologiska vetenskaper

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 454 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf