liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Coloring Channel Representations for Visual Tracking
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-6096-3648
2015 (Engelska)Ingår i: 19th Scandinavian Conference, SCIA 2015, Copenhagen, Denmark, June 15-17, 2015. Proceedings / [ed] Rasmus R. Paulsen, Kim S. Pedersen, Springer, 2015, Vol. 9127, s. 117-129Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Visual object tracking is a classical, but still open research problem in computer vision, with many real world applications. The problem is challenging due to several factors, such as illumination variation, occlusions, camera motion and appearance changes. Such problems can be alleviated by constructing robust, discriminative and computationally efficient visual features. Recently, biologically-inspired channel representations \cite{felsberg06PAMI} have shown to provide promising results in many applications ranging from autonomous driving to visual tracking.

This paper investigates the problem of coloring channel representations for visual tracking. We evaluate two strategies, channel concatenation and channel product, to construct channel coded color representations. The proposed channel coded color representations are generic and can be used beyond tracking.

Experiments are performed on 41 challenging benchmark videos. Our experiments clearly suggest that a careful selection of color feature together with an optimal fusion strategy, significantly outperforms the standard luminance based channel representation. Finally, we show promising results compared to state-of-the-art tracking methods in the literature.

Ort, förlag, år, upplaga, sidor
Springer, 2015. Vol. 9127, s. 117-129
Serie
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 9127
Nyckelord [en]
Visual tracking, channel coding, color names
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:liu:diva-121003DOI: 10.1007/978-3-319-19665-7_10ISBN: 978-3-319-19664-0 (tryckt)ISBN: 978-3-319-19665-7 (tryckt)OAI: oai:DiVA.org:liu-121003DiVA, id: diva2:850742
Konferens
Scandinavian Conference on Image Analysis
Tillgänglig från: 2015-09-02 Skapad: 2015-09-02 Senast uppdaterad: 2018-04-25Bibliografiskt granskad
Ingår i avhandling
1. Learning Convolution Operators for Visual Tracking
Öppna denna publikation i ny flik eller fönster >>Learning Convolution Operators for Visual Tracking
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Visual tracking is one of the fundamental problems in computer vision. Its numerous applications include robotics, autonomous driving, augmented reality and 3D reconstruction. In essence, visual tracking can be described as the problem of estimating the trajectory of a target in a sequence of images. The target can be any image region or object of interest. While humans excel at this task, requiring little effort to perform accurate and robust visual tracking, it has proven difficult to automate. It has therefore remained one of the most active research topics in computer vision.

In its most general form, no prior knowledge about the object of interest or environment is given, except for the initial target location. This general form of tracking is known as generic visual tracking. The unconstrained nature of this problem makes it particularly difficult, yet applicable to a wider range of scenarios. As no prior knowledge is given, the tracker must learn an appearance model of the target on-the-fly. Cast as a machine learning problem, it imposes several major challenges which are addressed in this thesis.

The main purpose of this thesis is the study and advancement of the, so called, Discriminative Correlation Filter (DCF) framework, as it has shown to be particularly suitable for the tracking application. By utilizing properties of the Fourier transform, a correlation filter is discriminatively learned by efficiently minimizing a least-squares objective. The resulting filter is then applied to a new image in order to estimate the target location.

This thesis contributes to the advancement of the DCF methodology in several aspects. The main contribution regards the learning of the appearance model: First, the problem of updating the appearance model with new training samples is covered. Efficient update rules and numerical solvers are investigated for this task. Second, the periodic assumption induced by the circular convolution in DCF is countered by proposing a spatial regularization component. Third, an adaptive model of the training set is proposed to alleviate the impact of corrupted or mislabeled training samples. Fourth, a continuous-space formulation of the DCF is introduced, enabling the fusion of multiresolution features and sub-pixel accurate predictions. Finally, the problems of computational complexity and overfitting are addressed by investigating dimensionality reduction techniques.

As a second contribution, different feature representations for tracking are investigated. A particular focus is put on the analysis of color features, which had been largely overlooked in prior tracking research. This thesis also studies the use of deep features in DCF-based tracking. While many vision problems have greatly benefited from the advent of deep learning, it has proven difficult to harvest the power of such representations for tracking. In this thesis it is shown that both shallow and deep layers contribute positively. Furthermore, the problem of fusing their complementary properties is investigated.

The final major contribution of this thesis regards the prediction of the target scale. In many applications, it is essential to track the scale, or size, of the target since it is strongly related to the relative distance. A thorough analysis of how to integrate scale estimation into the DCF framework is performed. A one-dimensional scale filter is proposed, enabling efficient and accurate scale estimation.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2018. s. 71
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1926
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
urn:nbn:se:liu:diva-147543 (URN)10.3384/diss.diva-147543 (DOI)9789176853320 (ISBN)
Disputation
2018-06-11, Ada Lovelace, B-huset, Campus Valla, Linköping, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-05-03 Skapad: 2018-04-25 Senast uppdaterad: 2019-09-26Bibliografiskt granskad

Open Access i DiVA

fulltext(1009 kB)238 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 1009 kBChecksumma SHA-512
4eeb1cdc6c6529da78c7969b8810ad674bb4c80812fed04edc50e9604e328ab8ba594ec6a5c14b38160516ee17102be81be1c50ba4c1df650c0dc7f014050423
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Häger, GustavKhan, Fahad ShahbazFelsberg, Michael

Sök vidare i DiVA

Av författaren/redaktören
Häger, GustavKhan, Fahad ShahbazFelsberg, Michael
Av organisationen
DatorseendeTekniska fakulteten
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 238 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 1205 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf