liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
Department of Materials Science & Engineering, Drexel University, Philadelphia, USA.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Tunnfilmsfysik. Linköpings universitet, Tekniska fakulteten.
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 108, s. 147-150Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We report on the synthesis of a two-dimensional transition metal carbide, Mo2C, (MXene) obtained by immersing Mo2Ga2C thin films in hydrofluoric acid. Experimental evidences for neither synthesis of a Mo-based MXene nor selective etching of Ga from an atomic nanolaminate have previously been presented. MXene formation is verified through X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray spectroscopy. This discovery unlocks new potential applications for Mo-based MXenes in a host of applications, from thermoelectrics to catalysis and energy storage.

Ort, förlag, år, upplaga, sidor
Elsevier, 2015. Vol. 108, s. 147-150
Nyckelord [en]
2D materials, Layered structures, MXene, Transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDS)
Nationell ämneskategori
Fysik
Identifikatorer
URN: urn:nbn:se:liu:diva-121255DOI: 10.1016/j.scriptamat.2015.07.003ISI: 000360250700035OAI: oai:DiVA.org:liu-121255DiVA, id: diva2:852829
Tillgänglig från: 2015-09-10 Skapad: 2015-09-10 Senast uppdaterad: 2018-05-24Bibliografiskt granskad
Ingår i avhandling
1. Synthesis and characterization of Mo-based nanolaminates
Öppna denna publikation i ny flik eller fönster >>Synthesis and characterization of Mo-based nanolaminates
2015 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Mn+1AXn (MAX) phases are nanolaminated compounds based on a transition metal (M), a group A element (A), and carbon or/and nitrogen (X), which exhibit a unique combination of ceramic and metallic properties. Mo-based MAX phases are among the least studied, despite indication of superconducting properties and high potential for fabrication of the grapheneanalogous 2D counterpart, Mo2C MXene. Furthermore, incorporation of Mn atoms in these MAX phases may induce a magnetic response.

In this work, I have performed theoretical calculations focused on evaluation of phase stability of the Mon+1GaCn MAX phases, and have synthesized the predicted stable Mo2GaC in thin film form using magnetron sputtering. Close to phase pure epitaxial films were grown at ~590 ºC, and electrical resistivity measurements using a four point probe technique suggest a superconducting behavior with a critical temperature of ~7 K.

The A-layer in the MAX phase can be selectively etched using different types of acids, leading to exfoliation of the MX-layers and realization of MXenes. After synthesis of the MAX phase related material Mo2Ga2C, the previously non-explored Mo2C MXene could be fabricated from etching Mo2Ga2C thin films in 50% hydrofluoric acid at a temperature of ~50 ºC for a duration of ~3 h.

Motivated by the realization of laminated Mo-based materials in 3D as well as 2D, I set out to explore the magnetic properties resulting from Mn-alloying of the non-magnetic Mo2GaC phase. For that purpose, (Mo,Mn)2GaC was synthesized using a DC magnetron sputtering system with Ga and C as elemental targets and a 1:1 atomic ratio Mo:Mn compound target. Heteroepitaxial films on MgO(111) substrates were grown at ~530 ºC, as confirmed by X-ray diffraction. Compositional analysis using energy dispersive X-ray spectroscopy showed a 2:1 ratio of the M and A elements and a 1:1 ratio for the Mo and Mn atoms in the film. Vibrating sample magnetometry was utilized in order to measure the magnetic behavior of the films, showing a magnetic response up to at least 300 K, and with a coercive field of 0.06 T, which is the highest reported for any MAX phase to date.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2015. s. 37
Serie
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1729
Nationell ämneskategori
Fysik Fysikalisk kemi
Identifikatorer
urn:nbn:se:liu:diva-121262 (URN)978-91-7685-948-3 (ISBN)
Presentation
2015-10-09, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (Engelska)
Opponent
Handledare
Anmärkning

The series name Linköping Studies in Science and Technology Licentiate Thesis is incorrect. The correct series name is Linköping Studies in Science and Technology Thesis.

Tillgänglig från: 2015-09-11 Skapad: 2015-09-10 Senast uppdaterad: 2019-11-18Bibliografiskt granskad
2. Synthesis and characterization of Mo- and W-based atomic laminates
Öppna denna publikation i ny flik eller fönster >>Synthesis and characterization of Mo- and W-based atomic laminates
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Mn+1AXn (MAX) phases are inherently nanolaminated compounds based on transition metals (M), A group elements (A), and carbon or/and nitrogen (X), which exhibit a unique combination of ceramic and metallic properties. My thesis work has focused on exploring novel MAX phase chemistries, including elemental combinations beyond those traditionally used for MAX phases, and their graphene-analogous 2D counterpart, MXenes.  

The first part of the thesis investigates Mo-based MAX phases, which are among the least studied, despite indication of superconducting properties and potential for derivation of Mo-based MXenes. Initially, I performed theoretical calculations focused on evaluation of phase stability of the Mon+1GaCn MAX phases, and synthesized the predicted stable Mo2GaC in thin film form using DC magnetron sputtering. Close to phase pure epitaxial films were grown at ~590 °C, and electrical resistivity measurements using a four-point probe technique suggest a superconducting behavior with a critical temperature of ~7 K. The follow-up of this work, was synthesis of a new MAX related material, Mo2Ga2C, also by means of DC magnetron sputtering. The theoretical predictions as well as the materials characterization by X-ray diffraction and neutron powder diffraction, suggested a Ga bilayer interleaved between a set of Mo2C blocks, arranged in a simple hexagonal structure.   

It is known that selectively etching of the A-layer in a MAX phase, shown for A=Al, can lead to realization of a MXene. Hence, the next step in my research was to explore the possibility of etching of A=Ga in Mo2GaC as well as in Mo2Ga2C, targeting a Mo2C MXene, as motivated by theoretically proposed superior thermoelectric properties of this 2D material. While Mo2GaC did not allow removal of the A-layer, I showed that Mo2C MXene could be realized from etching Mo2Ga2C thin films, removing the Ga bilayer, in 50% hydrofluoric acid at a temperature of ~50 °C for a duration of ~3 h. Hence, the results did not only produce the first Mo-based MXene, it also showed that MXenes can be obtained for etching A-elements other than Al. This, in turn, increase the pathways for expanding the family of MXenes.    

I thereafter set out to explore the magnetic properties resulting from Mn-alloying of the non-magnetic Mo2GaC MAX phase. For that purpose, (Mo,Mn)2GaC was synthesized using a  DC magnetron sputtering system with Ga and C as elemental targets and a 1:1 atomic ratio  Mo:Mn compound target. Heteroepitaxial films on MgO(111) substrates were grown at  ~530 °C, as confirmed by X-ray diffraction. Compositional analysis using energy dispersive X-ray spectroscopy showed a 2:1 ratio of the M- and A-elements and a 1:1 ratio for the Mo and Mn atoms in the film. Vibrating sample magnetometry was utilized to measure the magnetic behavior of the films, showing a magnetic response up to at least 300 K, and with a coercive field of 0.06 T, which is the highest reported for any MAX phase to date.  

The second part of my research has been dedicated to realizing new MAX phase related, chemically ordered compounds and their MXene derivatives, and to initiate exploration of their properties. Materials synthesis was performed by pressureless bulk sintering, and inspired by theoretical calculations we showed evidence for a new so called o-MAX phase, Mo2ScAlC2, with an out-of-plane chemically ordered structure. It is the first experimentally verified Sc-containing MAX phase, which makes its corresponding MXene, Mo2ScC2, also presented in this work, the first MXene including Sc. Moreover, I discovered two so called i-MAX phases including W, (W2/3Sc1/3)2AlC and (W2/3Y1/3)2AlC, which display in-plane chemical ordering in the M-layer. Furthermore, both was shown to allow synthesis of their corresponding 2D counterpart; W1.33C MXene, with ordered vacancies.  Initial test on these novel MXenes showed a high potential for hydrogen evolution reaction.  

Altogether, I have in my thesis work realized 6 novel MAX phases and related materials, and have shown evidence for 4 new MXenes. These materials inspire a wide range of future studies, with respect to fundamental properties as well as potential for future applications.   

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2018. s. 59
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1933
Nationell ämneskategori
Den kondenserade materiens fysik Nanoteknik
Identifikatorer
urn:nbn:se:liu:diva-148012 (URN)10.3384/diss.diva-148012 (DOI)9789176853122 (ISBN)
Disputation
2018-06-11, Planck, Fysikhuset, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-05-24 Skapad: 2018-05-24 Senast uppdaterad: 2019-09-30Bibliografiskt granskad

Open Access i DiVA

fulltext(817 kB)526 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 817 kBChecksumma SHA-512
d76cb00e5f1b44040100d098089d46e6495fad7f8f4c509a2b9cbdd9ebcad278a1b891b0d6769948b2bad981900c57d293250dcc6e828bdfeed925248a1d671a
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Meshkian, RaheleNäslund, Lars-ÅkeLu, JunBarsoum, Michel W.Rosén, Johanna

Sök vidare i DiVA

Av författaren/redaktören
Meshkian, RaheleNäslund, Lars-ÅkeLu, JunBarsoum, Michel W.Rosén, Johanna
Av organisationen
TunnfilmsfysikTekniska fakulteten
I samma tidskrift
Scripta Materialia
Fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 526 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1086 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf