liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Operator training simulator for an industrial bio-ethanol plant
Linköpings universitet, Institutionen för fysik, kemi och biologi, Teknisk biologi. Linköpings universitet, Tekniska högskolan. University of Applied Sciences, Bremen, Germany.
Lantmännen Reppe AB, Lidköping, Sweden.
Hochschule Furtwangen University of Applied Sciences Furtwangen, Villingen- Schwenningen, Germany.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Teknisk biologi. Linköpings universitet, Tekniska högskolan.ORCID-id: 0000-0001-9711-794X
2015 (engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

The development of a software-based operator training simulators (OTS) for an industrial bioethanol plant is described. OTS are used in the process industry for training of process operators since several years but few examples are reported for their use in biochemical and biotechnological industry. This study describes the implementation of an OTS at a large-scale bio-plant producing ethanol. The study includes the implementation of models and graphical user interfaces of the OTS as well as the experience of the operator training with it. The OTS encompasses the whole process, i.e. the sections for hydrolysis, fermentation, separation and distillation. The implementation was carried out on the commercial process control software WinErs. The graphical user interfaces, including all essential distributed control systems of the plant, show high fidelity with the real system. Dynamic process models were able to efficiently train operators in running and controlling the process under standard, start-up, shut-down and critical conditions. The models show a sufficient accuracy and robustness at different simulation speeds. Experiences of applying the OTS in the industrial operator environment of the large-scale plant implies that the OTS can be a useful tool for making operator training more time- and cost-efficient in the biochemical and biotechnological industry.

sted, utgiver, år, opplag, sider
2015.
Emneord [en]
Training simulator; Recombinant protein production; Cultivation; Modellin
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-121474OAI: oai:DiVA.org:liu-121474DiVA, id: diva2:855496
Tilgjengelig fra: 2015-09-21 Laget: 2015-09-21 Sist oppdatert: 2019-01-22bibliografisk kontrollert
Inngår i avhandling
1. Operator Training Simulators towards Industrial Biotechnology
Åpne denne publikasjonen i ny fane eller vindu >>Operator Training Simulators towards Industrial Biotechnology
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Biotechnological processes are carried out by applying advanced and demanding process strategies. Thus, fundamental understanding and knowledge about the applied microorganism is required to achieve high productivity and profitability. Therefore, computer-based simulation has been integrated into training methodologies for supplementing and expanding academic education and industrial operator training, in order to provide more effective as well as cost- and time-efficient training.

Operator training simulators (OTS) are computer-based training tools that represent the real laboratory or plant within an interactive, virtual environment. Trainees can learn about cause-and-effect relationships during the virtual process to improve process understanding. Also, trainees and operators get the opportunity to develop, maintain and improve their operational skills. The virtual environment allows delayed operational actions and operational faults, as they are not interfering with the real process. Acceleration of the simulation speed makes training more effective. For instance, different procedures such as start-up and shut-down can be trained in a limited period of training time. Incident and trouble-shooting training can be realized in a safe, virtual environment without exposing the operator to potential risks. So far, OTS are mainly used in military, aviation, medicine and chemical industries. However, there are only a few examples where OTS are applied in biotechnological process applications.

The aim of this thesis is to expose the benefits of using OTS for biotechnological process applications in academic education and industrial operator training. For this purpose, the feasibility of developing and applying OTS was investigated and discussed. Three OTS for the production of bio-ethanol and recombinant protein production were developed in order to investigate the benefits and their requirements as well as to assess the training effectiveness of these. To visualize the technical system including equipment and distributed control system (DCS), graphical user interfaces (GUIs) were designed, allowing the user to interact with the simulator. Mathematical models were developed and implemented in the OTS to ensure dynamic simulation of the process, where cause-and-effect relationships are realistically described. The essential part of an OTS for biotechnological process applications is the embedded sub-model which describes the biological production system. It is important that the cell growth behaviour within a bioreactor can be  simulated with sufficient accuracy in order to ensure high training effectiveness.

In the assessment of the training effectiveness in academic education, it was observed that the students’ capability of understanding and controlling complex biotechnological processes improved after OTS training. Students showed better performance in laboratory experiments after participating in OTS pre-training. Moreover, the development of an OTS for an industrial, large-scale bio-ethanol plant illuminates the needs of OTS in biotechnological process industries. It was shown how the conceptual design methodology can be applied in designing an OTS, based on training needs from the industrial user perspective. Also, construction of the OTS including the formulation of mathematical models, the model structure which is embedded in the OTS and the design of the GUIs is covered in this thesis. Whether the use of the OTS will become cost-effective and assure maximum transfer of training depends on long term evaluation. However, application and evaluation of the developed OTS reveal the benefits and training effectiveness of these systems. The findings of the thesis might considerably facilitate the introduction of OTS into academic education and industrial operator training for biotechnological process applications.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2015. s. 43
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1683
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-121476 (URN)978-91-7519-031-0 (ISBN)
Disputas
2015-10-15, Planck, Fysikhuset, Campus Valla, Linköping, 14:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2015-09-21 Laget: 2015-09-21 Sist oppdatert: 2019-01-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Gerlach, IngaMandenius, Carl-Fredrik

Søk i DiVA

Av forfatter/redaktør
Gerlach, IngaMandenius, Carl-Fredrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 336 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf