liu.seSearch for publications in DiVA

Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt222",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt1137",{id:"formSmash:j_idt1137",widgetVar:"widget_formSmash_j_idt1137",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

Order online >>
#### Other links

Publisher's full text
#### Authority records

Karlsson, John
#### Search in DiVA

##### By author/editor

Karlsson, John
##### By organisation

Mathematical Statistics Faculty of Science & Engineering
On the subject

Probability Theory and Statistics
#### Search outside of DiVA

GoogleGoogle Scholar$(function(){PrimeFaces.cw('Chart','widget_formSmash_j_idt1376_0_downloads',{id:'formSmash:j_idt1376:0:downloads',type:'bar',responsive:true,data:[[16,8,6,5,14,4,13,7,7,7]],title:"Downloads of File (FULLTEXT01)",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:857512'}],ticks:["Jul -23","Aug -23","Sep -23","Oct -23","Nov -23","Dec -23","Jan -24","Feb -24","Mar -24","Apr -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 696 downloads$(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_j_idt1379",{id:"formSmash:j_idt1379",widgetVar:"widget_formSmash_j_idt1379",target:"formSmash:downloadLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade"});}); findCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1382",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[2,8,1,1,11,2,2,1,12,8]],title:"Visits for this publication",axes:{xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}},yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}}},series:[{label:'diva2:857512'}],ticks:["Jul -23","Aug -23","Sep -23","Oct -23","Nov -23","Dec -23","Jan -24","Feb -24","Mar -24","Apr -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 2015 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1534",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt197",{id:"formSmash:upper:j_idt197",widgetVar:"widget_formSmash_upper_j_idt197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt198_j_idt200",{id:"formSmash:upper:j_idt198:j_idt200",widgetVar:"widget_formSmash_upper_j_idt198_j_idt200",target:"formSmash:upper:j_idt198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

A class of infinite dimensional stochastic processes with unbounded diffusion and its associated Dirichlet formsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Linköping: Linköping University Electronic Press, 2015. , p. 34
##### Series

Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1699
##### National Category

Probability Theory and Statistics
##### Identifiers

URN: urn:nbn:se:liu:diva-121636DOI: 10.3384/diss.diva-121636ISBN: 978-91-7685-966-7 (print)OAI: oai:DiVA.org:liu-121636DiVA, id: diva2:857512
##### Public defence

2015-12-10, C3, C-huset, Campus Valla, Linköping, 13:30 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt552",{id:"formSmash:j_idt552",widgetVar:"widget_formSmash_j_idt552",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt558",{id:"formSmash:j_idt558",widgetVar:"widget_formSmash_j_idt558",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt565",{id:"formSmash:j_idt565",widgetVar:"widget_formSmash_j_idt565",multiple:true}); Available from: 2015-10-26 Created: 2015-09-29 Last updated: 2019-11-15Bibliographically approved
##### List of papers

This thesis consists of two papers which focuses on a particular diffusion type Dirichlet form

where Here is the basis in the Cameron-Martin space, H, consisting of the Schauder functions, and ν denotes the Wiener measure.

In Paper I, we let vary over the space of wiener trajectories in a way that the diffusion operator A is almost everywhere an unbounded operator on the Cameron–Martin space. In addition we put a weight function on theWiener measure and show that under these changes of the reference measure, the Malliavin derivative and divergence are closable operators with certain closable inverses. It is then shown that under certain conditions on , and these changes of reference measure, the Dirichlet form is quasi-regular. This is done first in the classical Wiener space and then the results are transferred to the Wiener space over a Riemannian manifold.

Paper II focuses on the case when is a sequence of non-decreasing real numbers. The process X associated to is then an infinite dimensional Ornstein-Uhlenbeck process. In this case we show that the distributions of a sequence of certain finite dimensional Ornstein-Uhlenbeck processes converge weakly to the distribution of the infinite dimensional Ornstein-Uhlenbeck process. We also investigate the quadratic variation for this process, both in the classical sense and in the recent framework of stochastic calculus via regularization. Since the process is Banach space valued, the tensor quadratic variation is an appropriate tool to establish the Itô formula for the infinite dimensional Ornstein-Uhlenbeck process X. Sufficient conditions are presented for the scalar as well as the tensor quadratic variation to exist.

1. A class of infinite dimensional stochastic processes with unbounded diffusion$(function(){PrimeFaces.cw("OverlayPanel","overlay812854",{id:"formSmash:j_idt621:0:j_idt625",widgetVar:"overlay812854",target:"formSmash:j_idt621:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Infinite dimensional Ornstein-Uhlenbeck processes with unbounded diffusion: Approximation, quadratic variation, and Itô formula$(function(){PrimeFaces.cw("OverlayPanel","overlay862728",{id:"formSmash:j_idt621:1:j_idt625",widgetVar:"overlay862728",target:"formSmash:j_idt621:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1419",{id:"formSmash:j_idt1419",widgetVar:"widget_formSmash_j_idt1419",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1507",{id:"formSmash:lower:j_idt1507",widgetVar:"widget_formSmash_lower_j_idt1507",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1509_j_idt1512",{id:"formSmash:lower:j_idt1509:j_idt1512",widgetVar:"widget_formSmash_lower_j_idt1509_j_idt1512",target:"formSmash:lower:j_idt1509:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});