liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
A class of infinite dimensional stochastic processes with unbounded diffusion and its associated Dirichlet forms
Linköpings universitet, Matematiska institutionen, Matematisk statistik. Linköpings universitet, Tekniska fakulteten.
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis consists of two papers which focuses on a particular diffusion type Dirichlet form

 

where  Here  is the basis in the Cameron-Martin space, H, consisting of the Schauder functions, and ν denotes the Wiener measure.

In Paper I, we let  vary over the space of wiener trajectories in a way that the diffusion operator A is almost everywhere an unbounded operator on the Cameron–Martin space. In addition we put a weight function  on theWiener measure  and show that under these changes of the reference measure, the Malliavin derivative and divergence are closable operators with certain closable inverses. It is then shown that under certain conditions on , and these changes of reference measure, the Dirichlet form is quasi-regular. This is done first in the classical Wiener space and then the results are transferred to the Wiener space over a Riemannian manifold.

Paper II focuses on the case when  is a sequence of non-decreasing real numbers. The process X associated to  is then an infinite dimensional Ornstein-Uhlenbeck process. In this case we show that the distributions of a sequence of certain finite dimensional Ornstein-Uhlenbeck processes converge weakly to the distribution of the infinite dimensional Ornstein-Uhlenbeck process. We also investigate the quadratic variation for this process, both in the classical sense and in the recent framework of stochastic calculus via regularization. Since the process is Banach space valued, the tensor quadratic variation is an appropriate tool to establish the Itô formula for the infinite dimensional Ornstein-Uhlenbeck process X. Sufficient conditions are presented for the scalar as well as the tensor quadratic variation to exist.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2015. , s. 34
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1699
Nationell ämneskategori
Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:liu:diva-121636DOI: 10.3384/diss.diva-121636ISBN: 978-91-7685-966-7 (tryckt)OAI: oai:DiVA.org:liu-121636DiVA, id: diva2:857512
Disputation
2015-12-10, C3, C-huset, Campus Valla, Linköping, 13:30 (Engelska)
Opponent
Handledare
Tillgänglig från: 2015-10-26 Skapad: 2015-09-29 Senast uppdaterad: 2019-11-15Bibliografiskt granskad
Delarbeten
1. A class of infinite dimensional stochastic processes with unbounded diffusion
Öppna denna publikation i ny flik eller fönster >>A class of infinite dimensional stochastic processes with unbounded diffusion
2015 (Engelska)Ingår i: Stochastics: An International Journal of Probablitiy and Stochastic Processes, ISSN 1744-2508, E-ISSN 1744-2516, Vol. 87, nr 3, s. 424-457Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The paper studies Dirichlet forms on the classical Wiener space and the Wiener space over non-compact complete Riemannian manifolds. The diffusion operator is almost everywhere an unbounded operator on the Cameron-Martin space. In particular, it is shown that under a class of changes of the reference measure, quasi-regularity of the form is preserved. We also show that under these changes of the reference measure, derivative and divergence are closable with certain closable inverses. We first treat the case of the classical Wiener space and then we transfer the results to the Wiener space over a Riemannian manifold.

Ort, förlag, år, upplaga, sidor
Taylor and Francis: STM, Behavioural Science and Public Health Titles, 2015
Nyckelord
Dirichlet form on Wiener space; Dirichlet form on Wiener space over non-compact manifold; closability; weighted Wiener measure; quasi-regularity
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:liu:diva-118070 (URN)10.1080/17442508.2014.959952 (DOI)000353580300004 ()
Tillgänglig från: 2015-05-20 Skapad: 2015-05-20 Senast uppdaterad: 2017-12-04
2. Infinite dimensional Ornstein-Uhlenbeck processes with unbounded diffusion: Approximation, quadratic variation, and Itô formula
Öppna denna publikation i ny flik eller fönster >>Infinite dimensional Ornstein-Uhlenbeck processes with unbounded diffusion: Approximation, quadratic variation, and Itô formula
2016 (Engelska)Ingår i: Mathematische Nachrichten, ISSN 0025-584X, E-ISSN 1522-2616, Vol. 289, nr 17-18, s. 2192-2222Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The paper studies a class of Ornstein-Uhlenbeck processes on the classical Wiener space. These processes are associated with a diffusion type Dirichlet form whose corresponding diffusion operator is unbounded in the Cameron- Martin space. It is shown that the distributions of certain finite dimensional Ornstein-Uhlenbeck processes converge weakly to the distribution of such an infinite dimensional Ornstein-Uhlenbeck process. For the infinite dimensional processes, the ordinary scalar quadratic variation is calculated. Moreover, relative to the stochastic calculus via regularization, the scalar as well as the tensor quadratic variation are derived. A related Itô formula is presented.

Ort, förlag, år, upplaga, sidor
Wiley-VCH Verlagsgesellschaft, 2016
Nyckelord
Infinite dimensional Ornstein-Uhlenbeck process, quadratic variation, Itô formula, weak approximation
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:liu:diva-122181 (URN)10.1002/mana.201500146 (DOI)000389128100008 ()
Anmärkning

At the time for thesis presentation publication was in status: Manuscript.

Tillgänglig från: 2015-10-23 Skapad: 2015-10-23 Senast uppdaterad: 2017-12-01Bibliografiskt granskad

Open Access i DiVA

fulltext(405 kB)718 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 405 kBChecksumma SHA-512
9d41007ba519f112d6e3ea08f8a68bd73ba2f72bfa7227840054b7cd40303c1d55f7efc528e5a9d6fb9ecd3da26649461c8ff36a60faee1c62b4fc2149d10afb
Typ fulltextMimetyp application/pdf
omslag(23 kB)78 nedladdningar
Filinformation
Filnamn COVER01.pdfFilstorlek 23 kBChecksumma SHA-512
3ab0e90895c6e26af66e2406dfbe58c04fc35d4900348efda768f04059072fe773f928da3f3462b3487ef5febec7a153608906e29f36b93815851cf7d8b93c93
Typ coverMimetyp application/pdf
Beställ online >>

Övriga länkar

Förlagets fulltext

Person

Karlsson, John

Sök vidare i DiVA

Av författaren/redaktören
Karlsson, John
Av organisationen
Matematisk statistikTekniska fakulteten
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 718 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 2036 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf