liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Surface Phase Transformation in Austenitic Stainless Steel Induced by Cyclic Oxidation in Humidified Air
Linköpings universitet, Tekniska fakulteten. Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial.
Siemens AG, Huttenstr. 12, 10553 Berlin, Germany. (Siemens Industrial Turbomachinery AB, Berlin)
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. Sandviken, Sweden.
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
Visa övriga samt affilieringar
2015 (Engelska)Ingår i: Corrosion Science, ISSN 0010-938X, E-ISSN 1879-0496, Vol. 100, s. 524-534Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The formation of α’ martensite at the surface of an AISI 304 stainless steel subjected to cyclic heating in humidified air is reported. The α’ martensite formed during the cooling part of the cyclic tests due to local depletion of Cr and Mn and transformed back to austenite when the temperature again rose to 650 °C. The size of the α’ martensite region increased with increasing number of cycles. Thermodynamical simulations were used as basis for discussing the formation of α’ martensite. The effect of the α’ martensite on corrosion is also discussed.

Ort, förlag, år, upplaga, sidor
Pergamon Press, 2015. Vol. 100, s. 524-534
Nyckelord [en]
Stainless steel, thermal cycling, SEM, oxidation, high temperature corrosion
Nationell ämneskategori
Metallurgi och metalliska material
Identifikatorer
URN: urn:nbn:se:liu:diva-122008DOI: 10.1016/j.corsci.2015.08.030ISI: 000363070100049OAI: oai:DiVA.org:liu-122008DiVA, id: diva2:861052
Anmärkning

Funding agencies: AB Sandvik Materials Technology in Sweden; Swedish National Energy Administration through the Research Consortium of Materials Technology for Thermal Energy Processes [KME-701]; Agora Materiae and AFM Strategic Faculty Grant SFO-MAT-LiU at Linkoping Unive

Tillgänglig från: 2015-10-15 Skapad: 2015-10-15 Senast uppdaterad: 2017-12-01
Ingår i avhandling
1. On High-Temperature Behaviours of Heat Resistant Austenitic Alloys
Öppna denna publikation i ny flik eller fönster >>On High-Temperature Behaviours of Heat Resistant Austenitic Alloys
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Advanced heat resistant materials are important to achieve the transition to long term sustainable power generation. The global increase in energy consumption and the global warming from greenhouse gas emissions create the need for more sustainable power generation processes. Biomass-fired power plants with higher efficiency could generate more power but also reduce the emission of greenhouse gases, e.g. CO2. Biomass offers no net contribution of CO2 to the atmosphere. To obtain greater efficiency of power plants, one option is to increase the temperature and the pressure in the boiler section of the power plant. This requires improved material properties, such as higher yield strength, creep strength and high-temperature corrosion resistance, as well as structural integrity and safety.

Today, some austenitic stainless steels are design to withstand temperatures up to 650 °C in tough environments. Nickel-based alloys are designed to withstand even higher temperatures. Austenitic stainless steels are more cost effective than nickel-based alloys due to a lower amount of expensive alloying elements. However, the performance of austenitic stainless steels at the elevated temperatures of future operation conditions in biomass-red power plants is not yet fully understood.

This thesis presents research on the influence of long term high-temperature ageing on mechanical properties, the influence of very slow deformation rates at high-temperature on deformation, damage and fracture, and the influence of high-temperature environment and cyclic operation conditions on the material behaviour. Mechanical and thermal testing have been performed followed by subsequent studies of the microstructure, using scanning electron microscopy, to investigate the material behaviours.

Results shows that long term ageing at high temperatures leads to the precipitation of intermetallic phases. These intermetallic phases are brittle at room temperature and become detrimental for the impact toughness of some of the austenitic stainless steels. During slow strain rate tensile deformation at elevated temperature time dependent deformation and recovery mechanisms are pronounced. The creep-fatigue interaction behaviour of an austenitic stainless steel show that dwell time gives shorter life at a lower strain range, but has none or small effect on the life at a higher strain range.

Finally, this research results in an increased knowledge of the structural, mechanical and chemical behaviour as well as a deeper understanding of the deformation, damage and fracture mechanisms that occur in heat resistant austenitic alloys at high-temperature environments. It is believed that in the long term, this can contribute to material development achieving the transition to more sustainable power generation in biomass-red power plants.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2015. s. 56
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1725
Nationell ämneskategori
Metallurgi och metalliska material Materialteknik
Identifikatorer
urn:nbn:se:liu:diva-122945 (URN)10.3384/diss.diva-122945 (DOI)978-91-7685-896-7 (ISBN)
Disputation
2015-12-21, ACAS, Hus A, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2015-11-30 Skapad: 2015-11-30 Senast uppdaterad: 2019-11-15Bibliografiskt granskad

Open Access i DiVA

fulltext(11167 kB)124 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 11167 kBChecksumma SHA-512
4703f11dd0ea5184b571bb5937c4ccfd8ae51f14ca9354a0bcd740cb0361e89fd38a52a05d5d3674e915a481439174ee69db0d9bb6dc3da341c88dfed86b2671
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Calmunger, MattiasEriksson, RobertChai, GuocaiJohansson, StenMoverare, Johan

Sök vidare i DiVA

Av författaren/redaktören
Calmunger, MattiasEriksson, RobertChai, GuocaiJohansson, StenMoverare, Johan
Av organisationen
Tekniska fakultetenKonstruktionsmaterial
I samma tidskrift
Corrosion Science
Metallurgi och metalliska material

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 124 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 470 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf