liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Enabling organic power electronics with a cellulose nano-scaffold
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-2904-7238
Innventia AB, Stockholm, Sweden.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
Vise andre og tillknytning
2015 (engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

Exploiting the nanoscale properties of certain materials enables the creation of new materials with a unique set of properties. Here, we report on an electronic (and ionic) conducting paper based on cellulose nanofibrils (CNF) composited with poly(3,4-ethylene-dioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS), which may be facilely processed into large three-dimensional geometries, while keeping unprecedented electronic and ionic conductivities of 140 S/cm and 20 mS/cm, respectively. This is achieved by cladding the CNF with PEDOT:PSS, and trapping an ion-transporting phase in the interstices between these nanofibrils. The unique properties of the resulting nanopaper composite have been used to demonstrate (electrochemical) transistors, supercapacitors and conductors resulting in exceptionally high device parameters, such as an associated transconductance, charge storage capacity and current level beyond 1 S, 1 F and 1 A, respectively.

sted, utgiver, år, opplag, sider
2015. s. -+
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-122021OAI: oai:DiVA.org:liu-122021DiVA, id: diva2:861276
Tilgjengelig fra: 2015-10-16 Laget: 2015-10-16 Sist oppdatert: 2018-02-15bibliografisk kontrollert
Inngår i avhandling
1. Upscaling Organic Electronic Devices
Åpne denne publikasjonen i ny fane eller vindu >>Upscaling Organic Electronic Devices
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Conventional electronics based on silicon, germanium, or compounds of gallium require prohibitively expensive investments. A state-of-the-art microprocessor fabrication facility can cost up to $15 billion while using environmentally hazardous processes. In that context, the discovery of solution-processable conducting (and semiconducting) polymers stirred up expectations of ubiquitous electronics because it enables the mass-production of devices using well established high-volume printing techniques.

In essence, this thesis attempts to study the characteristics and applications of thin conducting polymer films (<200 nm), and scale them up to thick-films (>100 μm). First, thin-films of organic materials were combined with an electric double layer capacitor to decrease the operating voltage of organic field effect transistors. In addition, ionic current-rectifying diodes membranes were integrated inside electrochromic displays to increase the device’s bistability and obviate the need for an expensive addressing backplane.

This work also shows that it is possible to forgo the substrate and produce a self-standing electrochromic device by compositing the same water-processable material with nanofibrillated cellulose (plus a whitening pigment and high-boiling point solvents). In addition, we investigated the viability of these (semi)conducting polymer nanopaper composites in a variety of applications. This material exhibited an excellent combined electronic-ionic conductivity. Moreover, the conductivities in this easy-to-process composite remained constant within a wide range of thicknesses. Initially, this (semi)conducting nanopaper composite was used to produce electrochemical transistors with a giant transconductance (>1 S). Subsequently, it was used as electrodes to construct a supercapacitorwhose capacitance exceeds 1 F.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2015. s. 62
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1711
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-122022 (URN)10.3384/diss.diva-122022 (DOI)978-91-7685-929-2 (ISBN)
Disputas
2015-11-13, Resursen, Pronova, Norrköping Konferens, St Persgatan 19, Norrköping, 10:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2015-10-16 Laget: 2015-10-16 Sist oppdatert: 2019-11-15bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Malti, AbdellahEdberg, JesperKhan, Zia UllahLiu, XianjieZhao, DanEngquist, IsakFahlman, MatsCrispin, XavierBerggren, Magnus

Søk i DiVA

Av forfatter/redaktør
Malti, AbdellahEdberg, JesperKhan, Zia UllahLiu, XianjieZhao, DanEngquist, IsakFahlman, MatsCrispin, XavierBerggren, Magnus
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 842 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf