liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Printed Electrodes with Memory Labels Embracing Body Coupled Communication: An Alternate M2M Communication Paradigm for Internet of Things
Linköpings universitet, Institutionen för systemteknik, Elektroniska Kretsar och System. Linköpings universitet, Tekniska fakulteten. Department of Electrical Engineering, Eindhoven University of Technology (TU/e), Eindhoven, The Netherlands.
Linköpings universitet, Institutionen för systemteknik, Elektroniska Kretsar och System. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-2144-6795
2015 (engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

A cost-effective concept of silicon-printed hybrid memory label for capacitive body coupled communication (BCC) is discussed in this paperin the context of internet of things (IoT). The strength of a hybrid approach is deliberated after careful review of organic thin film transistors (OTFTs) performance in the existing printed technologies. Further, the performance of battery operated baseband and passband communication architectures have experimentally been demonstrated for an alternate, short range, wireless, machine-to-machine (M2M) communication paradigm for smart phones platform, the capacitive BCC channel. The  operating frequency range is from 100 kHz to 10 MHz for different body positions and printed electrodes configuration/sizes in conjunction with different output drivers. The transmission/reception of signals to the smart phone has been carried out through an SPI and Bluetooth interface to ensure that isolated earth ground conditions were guaranteed for capacitive BCC channel. The BCC passband communication architecture achieves 1 kbps while the digital baseband architecture achieves 100 kbps data rate for 10−2 packet error rate (PER) in the given experimental setup.

sted, utgiver, år, opplag, sider
2015.
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-122835OAI: oai:DiVA.org:liu-122835DiVA, id: diva2:874196
Tilgjengelig fra: 2015-11-26 Laget: 2015-11-26 Sist oppdatert: 2018-11-08bibliografisk kontrollert
Inngår i avhandling
1. Variation-Aware System Design Simulation Methodology for Capacitive BCC Transceivers
Åpne denne publikasjonen i ny fane eller vindu >>Variation-Aware System Design Simulation Methodology for Capacitive BCC Transceivers
2015 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Capacitive body coupled communication (BCC), frequency range 500 kHz to 15 MHz, is considered an emerging alternate short range wireless technology which can meet the stringent low power consumption (< 1 mW) and low data rate (< 100 kbps) requirements for the next generation of connected devices for applications like internet-of-things (IoT) and wireless sensor network (WSN). But a reliable solution for this mode of communication covering all possible body positions and maximum communication distances around the human body could not be presented so far, despite its inception around 20 years back in 1995. The uncertainties/errors associated with experimental measurement setup create ambiguity about the measured propagation loss or transmission errors. The reason is the usage of either earth grounded lab instruments or the direct coupling of earth ground with transmitter/receiver or the analog front end cut-off frequency limitations in a few MHz region or the balun to provide isolation or the measurements on simplified homogeneous biological phantoms. Another source of ambiguity in the experimental measurements is attributed to the natural variations in human tissue electrophysiological properties from person to person which are also affected by physical factors like age, gender, number of cells at different body locations and humidity. The analytical models presented in the literature are also oversimplified which do not predict the true propagation loss for capacitive BCC channel.

An attempt is being made to understand and demonstrate, qualitatively and quantitatively, the physical phenomenon of signal transmission and propagation characteristics e.g., path loss in complex scenarios for capacitive BCC channel by both the experimental observations/measurements and simulation models in this PhD dissertation. An alternate system design simulation methodology has been proposed which estimates the realistic path loss even for longer communication distances > 50 cm for capacitive BCC channel. The proposed simulation methodology allows to vary human tissue dielectric/thickness properties and easily integrates with the circuit simulators as the output is in the form of S-parameters. The advantage is that the capacitive BCC channel characteristics e.g., signal attenuation as a function of different physical factors could be readily simulated at the circuit level to choose appropriate circuit topology and define suitable system specifications. This simulation methodology is based on full-wave electromagnetic analysis and 3D modeling of human body and environment using their conductivity, permittivity, and tangent loss profile to estimate the realistic propagation loss or path loss due to their combined interaction with the electrode coupler for capacitive BCC channel. This methodology estimates the complex path impedance from transmitter to receiver which is important to determine the matching requirements for maximum power transfer. The simulation methodology also contributes towards better understanding of signal propagation through physical channel under the influence of different electrode coupler configurations. The simulation methodology allows to define error bounds for variations in propagation loss due to both numeric uncertainties (boundary conditions, mesh cells) and human body variation uncertainties (dielectric properties, dielectric thicknesses) for varying communication distances and coupler configuration/sizes.

Besides proposing the simulation methodology, the digital baseband and passband communication architectures using discrete electronics components have been experimentally demonstrated in the context of IoT application through capacitive BCC channel for data rates between 1 kbps to 100 kbps under isolated earth ground conditions. The experimental results/observations are supported by the simulation results for different scenarios of capacitive BCC channel.

The experimental and simulation results help in defining suitable system specifications for monolithic integrated circuit design of analog front end (AFE) blocks for capacitive BCC transmitter/receiver in deep submicron CMOS technologies.

sted, utgiver, år, opplag, sider
Linköping: Linköping University Electronic Press, 2015. s. 78
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1721
HSV kategori
Identifikatorer
urn:nbn:se:liu:diva-122840 (URN)10.3384/diss.diva-122840 (DOI)978-91-7685-906-3 (ISBN)
Disputas
2015-12-18, Visionen, Hus B, Campus Valla, Linköping, 13:15 (engelsk)
Opponent
Veileder
Merknad

The series name Linköping Studies in Science and Technology. Thesis in the printed version is incorrect. The correct name is Linköping Studies in Science and Technology. Dissertations. This is corrected in the electronic version.

In the electronic published version minor errors in the acknowledgements and some typographical mistakes has been corrected.

Tilgjengelig fra: 2015-11-26 Laget: 2015-11-26 Sist oppdatert: 2018-11-08bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Personposter BETA

Kazim, Muhammad IrfanWikner, Jacob

Søk i DiVA

Av forfatter/redaktør
Kazim, Muhammad IrfanWikner, Jacob
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 453 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf