liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Characterization of austenitic stainless steels deformed at elevated temperature
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten. Sandvik Materials Technology, Sandviken, Sweden.
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Mekanik och hållfasthetslära. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för ekonomisk och industriell utveckling, Konstruktionsmaterial. Linköpings universitet, Tekniska fakulteten.
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Metallurgical and Materials Transactions. A, ISSN 1073-5623, E-ISSN 1543-1940, Vol. 48A, nr 10, s. 4525-4538Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Highly alloyed austenitic stainless steels are promising candidates to replace more expansive nickel-based alloys within the energy-producing industry. The present study investigates the deformation mechanisms by microstructural characterisation, mechanical properties and stress-strain response of three commercial austenitic stainless steels and two commercial nickel-based alloys using uniaxial tensile tests at elevated temperatures from 400 C up to 700 C. The materials showed different influence of temperature on ductility, where the ductility at elevated temperatures increased with increasing nickel and solid solution hardening element content. The investigated materials showed planar dislocation driven deformation at elevated temperature. Scanning electron microscopy showed that deformation twins were an active deformation mechanism in austenitic stainless steels during tensile deformation at elevated temperatures up to 700 C.

Ort, förlag, år, upplaga, sidor
Springer-Verlag New York, 2017. Vol. 48A, nr 10, s. 4525-4538
Nyckelord [en]
Austenitic stainless steel, Nickel-based alloy, Microstructural characterization, Deformation twinning, Stress-strain response
Nationell ämneskategori
Materialteknik
Identifikatorer
URN: urn:nbn:se:liu:diva-122942DOI: 10.1007/s11661-017-4212-9ISI: 000408884300012OAI: oai:DiVA.org:liu-122942DiVA, id: diva2:875052
Anmärkning

Previous status of this publication was manuscript

Funding agencies: AB Sandvik Materials Technology in Sweden; Swedish National Energy Administration through the Research Consortium of Materials Technology for Thermal Energy Processes [KME-701]; AFM Strategic Faculty Grant SFO-MAT-LiU at Linkoping University [2009-00971]

Tillgänglig från: 2015-11-30 Skapad: 2015-11-30 Senast uppdaterad: 2017-09-22Bibliografiskt granskad
Ingår i avhandling
1. On High-Temperature Behaviours of Heat Resistant Austenitic Alloys
Öppna denna publikation i ny flik eller fönster >>On High-Temperature Behaviours of Heat Resistant Austenitic Alloys
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Advanced heat resistant materials are important to achieve the transition to long term sustainable power generation. The global increase in energy consumption and the global warming from greenhouse gas emissions create the need for more sustainable power generation processes. Biomass-fired power plants with higher efficiency could generate more power but also reduce the emission of greenhouse gases, e.g. CO2. Biomass offers no net contribution of CO2 to the atmosphere. To obtain greater efficiency of power plants, one option is to increase the temperature and the pressure in the boiler section of the power plant. This requires improved material properties, such as higher yield strength, creep strength and high-temperature corrosion resistance, as well as structural integrity and safety.

Today, some austenitic stainless steels are design to withstand temperatures up to 650 °C in tough environments. Nickel-based alloys are designed to withstand even higher temperatures. Austenitic stainless steels are more cost effective than nickel-based alloys due to a lower amount of expensive alloying elements. However, the performance of austenitic stainless steels at the elevated temperatures of future operation conditions in biomass-red power plants is not yet fully understood.

This thesis presents research on the influence of long term high-temperature ageing on mechanical properties, the influence of very slow deformation rates at high-temperature on deformation, damage and fracture, and the influence of high-temperature environment and cyclic operation conditions on the material behaviour. Mechanical and thermal testing have been performed followed by subsequent studies of the microstructure, using scanning electron microscopy, to investigate the material behaviours.

Results shows that long term ageing at high temperatures leads to the precipitation of intermetallic phases. These intermetallic phases are brittle at room temperature and become detrimental for the impact toughness of some of the austenitic stainless steels. During slow strain rate tensile deformation at elevated temperature time dependent deformation and recovery mechanisms are pronounced. The creep-fatigue interaction behaviour of an austenitic stainless steel show that dwell time gives shorter life at a lower strain range, but has none or small effect on the life at a higher strain range.

Finally, this research results in an increased knowledge of the structural, mechanical and chemical behaviour as well as a deeper understanding of the deformation, damage and fracture mechanisms that occur in heat resistant austenitic alloys at high-temperature environments. It is believed that in the long term, this can contribute to material development achieving the transition to more sustainable power generation in biomass-red power plants.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2015. s. 56
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1725
Nationell ämneskategori
Metallurgi och metalliska material Materialteknik
Identifikatorer
urn:nbn:se:liu:diva-122945 (URN)10.3384/diss.diva-122945 (DOI)978-91-7685-896-7 (ISBN)
Disputation
2015-12-21, ACAS, Hus A, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2015-11-30 Skapad: 2015-11-30 Senast uppdaterad: 2019-11-15Bibliografiskt granskad

Open Access i DiVA

fulltext(5861 kB)187 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 5861 kBChecksumma SHA-512
d35801e9547c8c6bdbcda87a5f08f3308a53ff7309b8fe0a3830d9094279c47df7cebb41577292b318495befff6d1701ae00dff134545dfd8530258c3451c78e
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Calmunger, MattiasChai, GuocaiJohansson, StenMoverare, Johan J.

Sök vidare i DiVA

Av författaren/redaktören
Calmunger, MattiasChai, GuocaiEriksson, RobertJohansson, StenMoverare, Johan J.
Av organisationen
KonstruktionsmaterialTekniska fakultetenMekanik och hållfasthetslära
I samma tidskrift
Metallurgical and Materials Transactions. A
Materialteknik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 187 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 1175 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf