liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Fuzzy Knowledge-Based Subspace Clustering for Life Science Data Analysis
School of Engineering and Information Technology, The University of New South Wales, Canberra, Australia; School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, Malaysia.
Aizu Research Cluster for Medical Engineering and Informatics, Research Center for Advanced Information Science and Technology, The University of Aizu, Aizu-Wakamatsu, Fukushima, Japan.ORCID-id: 0000-0002-4255-5130
School of Engineering and Information Technology, The University of New South Wales, Canberra, Australia.
School of Engineering and Information Technology, The University of New South Wales, Canberra, Australia.
2013 (Engelska)Ingår i: Knowledge-Based Systems in Biomedicine and Computational Life Science / [ed] Tuan D. Pham and Lakhmi C. Jain, Springer Berlin/Heidelberg, 2013, s. 177-213Kapitel i bok, del av antologi (Övrigt vetenskapligt)
Resurstyp
Text
Abstract [en]

Features or attributes play an important role when handling multi-dimensional datasets. Generally, not all the features are needed to find several groups of similar objects in traditional clustering methods because some of the features may not be relevant and also redundant. Hence, the concept of identifying subsets of the features that are relevant to clusters is introduced, instead of using the full set of features. This chapter discusses the use of the prior knowledge of the importance of features and their interaction in constructing both fuzzy measures and signed fuzzy measures for subspace clustering. The Choquet integral, which is known as a useful aggregation operator with respect to fuzzy measure, is used to aggregate the importance and interaction of the features. The concept of fuzzy knowledge-based subspace clustering is applied especially to the analysis of life science data in this chapter.

Ort, förlag, år, upplaga, sidor
Springer Berlin/Heidelberg, 2013. s. 177-213
Serie
Studies in Computational Intelligence, ISSN 1860-949X ; 450
Nationell ämneskategori
Annan data- och informationsvetenskap
Identifikatorer
URN: urn:nbn:se:liu:diva-125009DOI: 10.1007/978-3-642-33015-5_8Scopus ID: 2-s2.0-84893135059Libris ID: 13756696ISBN: 978-3-642-33014-8 (tryckt)ISBN: 978-3-642-33015-5 (tryckt)OAI: oai:DiVA.org:liu-125009DiVA, id: diva2:902786
Tillgänglig från: 2016-02-12 Skapad: 2016-02-12 Senast uppdaterad: 2018-01-26Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopusFind book in another country/Hitta boken i ett annat land

Personposter BETA

Pham, Tuan D

Sök vidare i DiVA

Av författaren/redaktören
Pham, Tuan D
Annan data- och informationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 288 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf