liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection
Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
Karolinska Institute, Sweden.
Karolinska Institute, Sweden.
Linköping University, Department of Clinical and Experimental Medicine, Division of Microbiology and Molecular Medicine. Linköping University, Faculty of Medicine and Health Sciences.
Show others and affiliations
2015 (English)In: Journal of Visualized Experiments, E-ISSN 1940-087X, no 104, p. 1-9, article id e53084Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Tuberculosis (TB) still holds a major threat to the health of people worldwide, and there is a need for cost-efficient but reliable models to help us understand the disease mechanisms and advance the discoveries of new treatment options. In vitro cell cultures of monolayers or co-cultures lack the three-dimensional (3D) environment and tissue responses. Herein, we describe an innovative in vitro model of a human lung tissue, which holds promise to be an effective tool for studying the complex events that occur during infection with Mycobacterium tuberculosis (M. tuberculosis). The 3D tissue model consists of tissue-specific epithelial cells and fibroblasts, which are cultured in a matrix of collagen on top of a porous membrane. Upon air exposure, the epithelial cells stratify and secrete mucus at the apical side. By introducing human primary macrophages infected with M. tuberculosis to the tissue model, we have shown that immune cells migrate into the infected-tissue and form early stages of TB granuloma. These structures recapitulate the distinct feature of human TB, the granuloma, which is fundamentally different or not commonly observed in widely used experimental animal models. This organotypic culture method enables the 3D visualization and robust quantitative analysis that provides pivotal information on spatial and temporal features of host cell-pathogen interactions. Taken together, the lung tissue model provides a physiologically relevant tissue micro-environment for studies on TB. Thus, the lung tissue model has potential implications for both basic mechanistic and applied studies. Importantly, the model allows addition or manipulation of individual cell types, which thereby widens its use for modelling a variety of infectious diseases that affect the lungs.

Place, publisher, year, edition, pages
JOURNAL OF VISUALIZED EXPERIMENTS , 2015. no 104, p. 1-9, article id e53084
Keywords [en]
Infection; Issue 104; In vitro model; 3D model; 3D analysis; lung tissue; tuberculosis; M. tuberculosis; granuloma
National Category
Cell and Molecular Biology Biomedical Laboratory Science/Technology
Identifiers
URN: urn:nbn:se:liu:diva-125330DOI: 10.3791/53084ISI: 000368572800031PubMedID: 26485646OAI: oai:DiVA.org:liu-125330DiVA, id: diva2:905952
Note

Funding Agencies|Swedish Research Council [2012-1951, 2012-3349]; Swedish Foundation for Strategic Research; Karolinska Institutet; Swedish International Development Cooperation Agency (Sida); Swedish Civil Contingencies Agency (MSB); Swedish Heart and Lung Foundation (HLF); Stockholm County Council

Available from: 2016-02-23 Created: 2016-02-19 Last updated: 2024-01-17
In thesis
1. Innate immune responses to Mycobacterium tuberculosis infection: How extracellular traps and trained immunity can restrict bacterial growth.
Open this publication in new window or tab >>Innate immune responses to Mycobacterium tuberculosis infection: How extracellular traps and trained immunity can restrict bacterial growth.
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis, and the cause of 1.5 million deaths in 2018. During a pulmonary TB infection, the bacterium reaches the lungs and is phagocytosed by cells of the innate immune system, primarily macrophages. The macrophages are either able to eradicate the bacteria or the bacteria start to replicate, and the following immune response leads to the formation of a large cluster of different cell types called a granuloma. In the granuloma the mycobacteria are contained in a latent infection, or they can start to replicate causing rupture of the granuloma and spread of the disease. Neutrophils are also innate immune cells that are rapidly recruited to the site of infection. They are phagocytes, but they also exert extracellular effector mechanisms by their release of microbicidal granule proteins, reactive oxygen species and neutrophil extracellular traps. M. tuberculosis has co-evolved and adapted to the human host making it ingenious at exploiting the human immune response, promoting its survival and replication in human host cells. The human immune system has also evolved mechanisms to limit M. tuberculosisreplication and spread. This thesis covers work on the innate immune response to TB and how neutrophils and macrophages respond to a mycobacterial infection and can control M. tuberculosis-replication.

Neutrophils and macrophages can respond to M. tuberculosis by releasing extracellular traps. We demonstrated that neutrophil extracellular traps contain the danger signal heat-shock protein 72 when induced by mycobacteria, which subsequently mediate a proinflammatory activation of adjacent macrophages. Macrophages can also release extracellular traps, and we observed the release of macrophage extracellular traps in response to M. tuberculosis that grow in cord-structures. We further demonstrated that the induction of extracellular traps also required the mycobacterial virulence factor ESAT-6.

Trained immunity is an epigenetically regulated memory of the innate immune system that results in a heightened response to a later encounter of the same or different pathogen. β-glucans are structural components of microbial cell walls and known inducers of trained immunity. We studied the effects of β-glucan from a bacterial source (curdlan from Alcaligenes faecalis), from yeast (WGP dispersible from Saccharomyces cerevisiae) and from the supernatant of a multicellular fungi (Alternaria) in search of functional changes in human macrophages which enhanced their anti-mycobacterial capacity. M. tuberculosis growth reduction was observed in WGP dispersible-trained macrophages when co-cultured with neutrophils. We also discovered that the interferon-gamma (IFNγ) signaling pathway, which is important for mycobacterial control, is hypomethylated in the WGP dispersible-trained macrophages. Since hypomethylation of genes typically is associated with gene activation, this suggests a more active IFNγ signaling in response to β-glucan innate immune training.

Most of our studies were performed using in vitro culturing of primary human macrophages and neutrophils. However, an in vitro 3D tissue model is a valuable tool when studying complex events that occur during a TB infection that involves both multiple cell types and requires knowledge of the spatial movement of cells. In this thesis we also describe an in vitro lung tissue model, which we could use to observe the clustering of monocytes around mycobacteria and quantify the size and number of macrophage clusters.

In conclusion, this thesis comprises work on innate immune functions during tuberculosis infection. We describe extracellular trap formation in macrophages and neutrophils in response to M. tuberculosis. We also explore trained immunity and how β-glucan training can enhance mycobacterial growth restriction.

Abstract [sv]

Tuberkulos (TB) är en infektionssjukdom som orsakade 1,5 miljoner dödsfall år 2018. Man smittas av TB via inandning av aerosoler som bildas när en sjuk person hostar eller nyser. Ett av de vanligaste symptomen vid TB är svår hosta, vilket medför att sjukdomen sprider sig vidare till andra i omgivningen. Det finns ett godkänt vaccin som ges till många spädbarn runtom i världen, men som endast ges till riskgrupper i Sverige. Detta för att det är inte ger ett bra skydd mot TB. Det finns även antibiotika som verkar mot TB, om man inte blir smittad med en antibiotika-resistent bakteriestam, men behandlingen tar upp till ett halvår och har många bieffekter. Dessutom tror man att uppemot en fjärdedel av jordens befolkning bär på latent TB, det vill säga TB som varken är smittsam eller orsakar symptom, men som kan bryta ut till aktiv sjukdom och sprida vidare infektionen till nya människor.

TB orsakas av bakterien Mycobacterium tuberculosis som vid smitta transporteras ner i lungorna och träffar på celler som tillhör det medfödda immunförsvaret, som till exempel makrofager. Makrofagerna äter upp mykobakterierna och skickar ut signaler, så kallade cytokiner, till andra celler som kommer och hjälper till, däribland neutrofiler. I bästa fall lyckas makrofagen döda bakterien men ofta kan mykobakterier överleva inne i makrofagerna, för att sedan föröka sig och sprida sig vidare och på så sätt orsaka sjukdom. Mykobakterier har en unik cellvägg som fungerar som ett skydd mot yttre påverkan och gör dem svåra att avdöda. Detta skyddar dem både från att dödas av kroppens celler men skyddar även till viss del mot antibiotika.

I den här avhandlingen har vi studerat funktioner hos det medfödda immunförsvaret vid infektion med M. tuberculosis. Bland annat har vi undersökt hur makrofager och neutrofiler aktiveras av mykobakterier, samspelet mellan de två celltyperna, samt hur man kan förstärka cellernas förmåga att avdöda bakterier.

Om man stimulerar neutrofiler med mykobakterier kan de försvara sig genom att frisätta molekyler som är toxiska för bakterier, men som mykobakterierna inte påverkas så mycket av på grund av deras cellvägg. Som en extra försvarsmekanism kan neutrofilerna även begå självmord och i processen skicka ut strängar av DNA som kan fånga in bakterier och förhindra att de sprids i vävnaden. Dessa DNA-nät kallas NETs, och innehåller toxiska molekyler men även signalmolekyler som kan överföras till makrofager. I vårt första arbete kunde vi visa att makrofager aktiverades av signalerna som överfördes via NETs och började då utsöndra mer proinflammatoriska cytokiner. I vårt andra arbete visade vi att även makrofager kan kasta ut DNA i strängar (kallas METs) när de stimulerades av mykobakterier som växer i större repliknande strukturer. Vi visar också på en koppling mellan virulens hos bakterierna och makrofagernas frisättning av METs.

I vårt tredje arbete beskriver vi en lungvävnadsmodell som kan användas för att studera tuberkulosinfektion. Vi visar att man kan använda den för att studera hur celler förflyttar sig i vävnaden och hopar sig runt mykobakterierna.

I vårt fjärde arbete studerade vi ett koncept som kallas ‘tränat medfött immunförsvar’. Det medfödda immunförsvaret har ett ‘minne’ och kan tränas till att bättre försvara oss mot tuberkulos. Vi har undersökt betaglukaner som är molekyler som finns som byggstenar i olika mikroorganismer och har studerat hur cellerna som tränats med dessa blir bättre på att avdöda mykobakterier. Vi har även tittat på de tränade cellernas DNA för att hitta epigenetiska förändringar som förklarar vad som ändras i cellerna när de blir tränade.

Kunskap om vad som händer när celler blir infekterade av mykobakterier, och hur de kan stimuleras eller tränas för att bättre avdöda bakterierna, är högst relevant i sökandet efter nya metoder för att förebygga och behandla TB.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. p. 58
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1761
National Category
Microbiology in the medical area
Identifiers
urn:nbn:se:liu:diva-170203 (URN)10.3384/diss.diva-170203 (DOI)9789179297589 (ISBN)
Public defence
2020-12-03, Online through Zoom (contact maria.lerm@liu.se) and Belladonna, Building 511, Campus US, Linköping, 09:00 (English)
Opponent
Supervisors
Available from: 2020-11-05 Created: 2020-10-09 Last updated: 2020-11-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Authority records

Braian, ClaraLerm, MariaParasa, Venkata R.

Search in DiVA

By author/editor
Braian, ClaraLerm, MariaParasa, Venkata R.
By organisation
Division of Microbiology and Molecular MedicineFaculty of Medicine and Health Sciences
In the same journal
Journal of Visualized Experiments
Cell and Molecular BiologyBiomedical Laboratory Science/Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1265 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf