liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
High performance PEDOT/lignin biopolymer composites for electrochemical supercapacitors
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
University of Basque Country, Spain.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för fysik, kemi och biologi, Biomolekylär och Organisk Elektronik. Linköpings universitet, Tekniska fakulteten.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Journal of Materials Chemistry A, ISSN 2050-7488, Vol. 4, nr 5, s. 1838-1847Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

Developing sustainable organic electrode materials for energy storage applications is an urgent task. We present a promising candidate based on the use of lignin, the second most abundant biopolymer in nature. This polymer is combined with a conducting polymer, where lignin as a polyanion can behave both as a dopant and surfactant. The synthesis of PEDOT/Lig biocomposites by both oxidative chemical and electrochemical polymerization of EDOT in the presence of lignin sulfonate is presented. The characterization of PEDOT/Lig was performed by UV-Vis-NIR spectroscopy, FTIR infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, cyclic voltammetry and galvanostatic charge-discharge. PEDOT doped with lignin doubles the specific capacitance (170.4 F g(-1)) compared to reference PEDOT electrodes (80.4 F g(-1)). The enhanced energy storage performance is a consequence of the additional pseudocapacitance generated by the quinone moieties in lignin, which give rise to faradaic reactions. Furthermore PEDOT/Lig is a highly stable biocomposite, retaining about 83% of its electroactivity after 1000 charge/discharge cycles. These results illustrate that the redox doping strategy is a facile and straightforward approach to improve the electroactive performance of PEDOT.

Ort, förlag, år, upplaga, sidor
ROYAL SOC CHEMISTRY , 2016. Vol. 4, nr 5, s. 1838-1847
Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
URN: urn:nbn:se:liu:diva-125323DOI: 10.1039/c5ta10096hISI: 000368839200035OAI: oai:DiVA.org:liu-125323DiVA, id: diva2:906104
Anmärkning

Funding Agencies|Power Papers project from the Knut and Alice Wallenberg foundation; Wallenberg Scholar grant from the Knut and Alice Wallenberg foundation; Marie Curie network Renaissance (NA); European Research Council by Starting Grant Innovative Polymers for Energy Storage (iPes) [306250]; Basque Government

Tillgänglig från: 2016-02-23 Skapad: 2016-02-19 Senast uppdaterad: 2017-11-30
Ingår i avhandling
1. Biohybrid Polymer Electrodes for Renewable Energy Storage
Öppna denna publikation i ny flik eller fönster >>Biohybrid Polymer Electrodes for Renewable Energy Storage
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Daily and seasonally fluctuating energy supply and demand requires adequate energy storage solutions. In recent years electrochemical supercapacitors have attracted considerable attention due to their ability to both store and deliver electrical energy efficiently. Our efforts are focused on developing and optimizing sustainable organic electrode materials for supercapacitors based on renewable bioorganic materials, offering a cheap, environmentally friendly and scalable alternative to store energy. In particular, we are using the second most abundant biopolymer in nature, lignin (Lig), which is an insulating material. However, when used in combination with electroactive and conducting polymers such as polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT), the biohybrid electrodes PPy/Lig and PEDOT/Lig display significantly enhanced energy storage performance as compared to the pristine conducting polymers without the lignin. Redox cyclic voltammetry and galvanostatic charge/discharge measurements indicate that the enhanced performance is due to the additional pseudocapacitance generated by the quinone moieties in lignin. Moreover, a conjugated redoxpolymer poly(aminoanthraquinone) PAAQ, with intrinsic quinone functions and excellentstability, has been combined with lignin and PEDOT resulting in a trihybrid bioelectrode. PEDOT compensates the low conductivity of PAAQ and provides electrical pathways to the quinone groups. The electrochemically generated quinones undergo a two electron, two protonredox process within the biohybrid electrodes as revealed by FTIR spectroelectrochemistry.These remarkable features reveal the exciting potential of a full organic energy storage device with long cycle life. Therefore, supercapacitor devices were designed in symmetric or asymmetric two electrode configuration. The best electrochemical performance was achieved by the asymmetric supercapacitor based on PEDOT+Lignin/PAAQ as the positive electrode and PEDOT/PAAQ as the negative electrode. This device exhibits superior electrochemical performance and outstanding stability after 10000 charge/discharge cycles due to the synergistic effect of the two electrodes. Finally, we have characterized the response of this supercapacitor device when charged with the intermittent power supply from an organic photovoltaic module. We have designed charging/discharging conditions such that reserve power was available in the storage device at all times. This work has resulted in an inexpensive fully organic system witht he dual function of energy conversion and storage.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2017. s. 64
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1834
Nationell ämneskategori
Energisystem Förnyelsebar bioenergi Energiteknik Materialkemi
Identifikatorer
urn:nbn:se:liu:diva-136156 (URN)9789176855737 (ISBN)
Disputation
2017-04-27, Plank, Fysikhuset, Campus Valla, Linköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2017-03-31 Skapad: 2017-03-31 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Personposter BETA

Ajjan, FátimaRebis, TomaszElfwing, AndersSolin, NiclasInganäs, Olle

Sök vidare i DiVA

Av författaren/redaktören
Ajjan, FátimaRebis, TomaszElfwing, AndersSolin, NiclasInganäs, Olle
Av organisationen
Biomolekylär och Organisk ElektronikTekniska fakulteten
I samma tidskrift
Journal of Materials Chemistry A
Biologiska vetenskaper

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 2205 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf