liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Energy Stable Model Reduction of Neurons by Non-negative Discrete Empirical Interpolation
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305-4035, USA.
Linköpings universitet, Matematiska institutionen, Beräkningsmatematik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-7972-6183
2016 (engelsk)Inngår i: SIAM Journal on Scientific Computing, ISSN 1064-8275, E-ISSN 1095-7197, Vol. 38, nr 2, s. B297-B326Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The accurate and fast prediction of potential propagation in neuronal networks is of prime importance in neurosciences. This work develops a novel structure-preserving model reduction technique to address this problem based on Galerkin projection and nonnegative operator approximation. It is first shown that the corresponding reduced-order model is guaranteed to be energy stable, thanks to both the structure-preserving approach that constructs a distinct reduced-order basis for each cable in the network and the preservation of nonnegativity. Furthermore, a posteriori error estimates are provided, showing that the model reduction error can be bounded and controlled. Finally, the application to the model reduction of a large-scale neuronal network underlines the capability of the proposed approach to accurately predict the potential propagation in such networks while leading to important speedups.

sted, utgiver, år, opplag, sider
SIAM publishing , 2016. Vol. 38, nr 2, s. B297-B326
Emneord [en]
Model reduction, non-negative reduced basis, discrete empirical interpolation, Hodgkin-Huxley equation, Summation by parts operators
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-127236DOI: 10.1137/15M1013870ISI: 000375484800031OAI: oai:DiVA.org:liu-127236DiVA, id: diva2:920972
Tilgjengelig fra: 2016-04-19 Laget: 2016-04-19 Sist oppdatert: 2018-01-26bibliografisk kontrollert

Open Access i DiVA

fulltext(888 kB)115 nedlastinger
Filinformasjon
Fil FULLTEXT02.pdfFilstørrelse 888 kBChecksum SHA-512
339ada16bafedb584549eaaec24bfc0d9c0377928b491a63a776ba4369ecc57b4a1d90e647641db1b6682362327e0367f08cb03649ce4a9bd367c46baae0d436
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Personposter BETA

Nordström, Jan

Søk i DiVA

Av forfatter/redaktør
Nordström, Jan
Av organisasjonen
I samme tidsskrift
SIAM Journal on Scientific Computing

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 195 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 641 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf