liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Low-Frequency Self-Powered Footstep Sensor Based on ZnO Nanowires on Paper Substrate
Linköpings universitet, Institutionen för teknik och naturvetenskap. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten. Acreo AB, Sweden.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Nanoscale Research Letters, ISSN 1931-7573, E-ISSN 1556-276X, Vol. 11, nr 156Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

In this work, we design and fabricate a wireless system with the main operating device based on zinc oxide (ZnO) nanowires. The main operating device is based on piezoelectric nanogenerator (NG) achieved using ZnO nanowires grown hydrothermally on paper substrate. The fabricated NG is capable of harvesting ambient mechanical energy from various kinds of human motion, e.g., footsteps. The harvested electric output has been used to serve as a self-powered pressure sensor. Without any storage device, the signal from a single footstep has successfully triggered a wireless sensor node circuit. This study demonstrates the feasibility of using ZnO nanowire piezoelectric NG as a low-frequency self-powered sensor, with potential applications in wireless sensor networks.

Ort, förlag, år, upplaga, sidor
SPRINGER , 2016. Vol. 11, nr 156
Nyckelord [en]
ZnO; Hydrothermal growth; Piezoelectric nanowire; Nanogenerator; Energy harvesting; Wireless data transmission
Nationell ämneskategori
Elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:liu:diva-127433DOI: 10.1186/s11671-016-1373-1ISI: 000373089300004PubMedID: 27000024OAI: oai:DiVA.org:liu-127433DiVA, id: diva2:925256
Anmärkning

Funding Agencies|CeNano grant; Swedish Government strategic research area in material science on functional materials at Linkoping University (Faculty Grant SFO-Mat-LiU) [2009-00971]

Tillgänglig från: 2016-05-01 Skapad: 2016-04-26 Senast uppdaterad: 2017-11-30
Ingår i avhandling
1. Development of Zinc Oxide Piezoelectric Nanogenerators for Low Frequency Applications
Öppna denna publikation i ny flik eller fönster >>Development of Zinc Oxide Piezoelectric Nanogenerators for Low Frequency Applications
2016 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Energy harvesting using piezoelectric nanomaterials provides an opportunity for advancement towards self-powered systems. Self-powered systems are a new emerging technology, which allows the use of a system or a device that perform a function without the need for external power source like for example, a battery or any other type of source. This technology can for example use harvested energy from sources around us such as ambient mechanical vibrations, noise, and human movement, etc. and convert it to electric energy using the piezoelectric effect. For nanoscale devices, the size of traditional batteries is not suitable and will lead to loss of the concept of “nano”. This is due to the large size and the relatively large magnitude of the delivered power from traditional sources. The development of a nanogenerator (NG) to convert energy from the environment into electric energy would facilitate the development of some self-powered systems relying on nano- devices.

The main objective of this thesis is to fabricate a piezoelectric Zinc Oxide (ZnO) NGs for low frequency (˂ 100 Hz) energy harvesting applications. For that, different types of NGs based on ZnO nanostructures have been carefully developed, and studied for testing under different kinds of low frequency mechanical deformations. Well aligned ZnO nanowires (NWs) possessing high piezoelectric coefficient were synthesized on flexible substrates using the low temperature hydrothermal route. These ZnO NWs were then used in different configurations to demonstrate different low frequency energy harvesting devices.

Using piezoelectric ZnO NWs, we started with the fabrication of sandwiched NG for hand writing enabled energy harvesting device based on a thin silver layer coated paper substrate. Such device configurations can be used for the development of electronic programmable smart paper. Further, we developed this NG to work as a triggered sensor for wireless system using foot-step pressure. These studies demonstrate the feasibility of using ZnO NWs piezoelectric NG as a low-frequency self-powered sensor, with potential applications in wireless sensor networks. After that, we investigated and fabricated a sensor on PEDOT: PSS plastic substrate either by one side growth technique or by using double sided growth. For the first growth technique, the fabricated NG has been used as a sensor for acceleration system; while the fabricated NG by the second technique has worked as anisotropic directional sensor. This fabricated configurations showed stability for sensing and can be used in surveillance, security, and auto-mobil applications. In addition to that, we investigated the fabrication of a sandwiched NG on plastic substrates. Finally, we demonstrated that doping ZnO NWs with extrinsic element (such as Ag) will lead to the reduction of the piezoelectric effect due to the loss of crystal symmetry. A brief summary into future opportunities and challenges are also presented in the last chapter of this thesis.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2016. s. 48
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1787
Nyckelord
Zinc oxide (ZnO), hydrothermal growth, piezoelectricity, nanowires (NWs), nanogenerator (NG), energy harvesting, wireless data transmission
Nationell ämneskategori
Nanoteknik Fysik
Identifikatorer
urn:nbn:se:liu:diva-131858 (URN)10.3384/diss.diva-131858 (DOI)9789176856932 (ISBN)
Disputation
2016-11-11, K3, Kåkenhus, Campus Norrköping, Norrköping, 10:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2016-10-11 Skapad: 2016-10-11 Senast uppdaterad: 2019-10-29Bibliografiskt granskad

Open Access i DiVA

fulltext(2558 kB)252 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 2558 kBChecksumma SHA-512
b3dcc948598a09417be0501efe8db42094a5bbd3b1ce38c522e0beca5f3f5a64e5600c4aac2b58e9b19c8a99b7bc5235c25da42ef7d621a173aec0137884053a
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Nour, EimanBondarevs, AndrejsHuss, PatrikSandberg, MatsGong, ShaofangWillander, MagnusNour, Omer

Sök vidare i DiVA

Av författaren/redaktören
Nour, EimanBondarevs, AndrejsHuss, PatrikSandberg, MatsGong, ShaofangWillander, MagnusNour, Omer
Av organisationen
Institutionen för teknik och naturvetenskapTekniska fakultetenFysik och elektroteknik
I samma tidskrift
Nanoscale Research Letters
Elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 252 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 758 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf