liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Estimating Parameters of Optimal Average and Adaptive Wiener Filters for Image Restoration with Sequential Gaussian Simulation
Aizu Research Cluster for Medical Engineering and Informatics, Center for Advanced Information Science and Technology, The University of Aizu, Aizuwakamatsu, Japan.ORCID-id: 0000-0002-4255-5130
2015 (Engelska)Ingår i: IEEE Signal Processing Letters, ISSN 1070-9908, E-ISSN 1558-2361, Vol. 22, nr 11, s. 1950-1954Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

Filtering additive white Gaussian noise in images using the best linear unbiased estimator (BLUE) is technically sound in a sense that it is an optimal average filter derived from the statistical estimation theory. The BLUE filter mask has the theoretical advantage in that its shape and its size are formulated in terms of the image signals and associated noise components. However, like many other noise filtering problems, prior knowledge about the additive noise needs to be available, which is often obtained using training data. This paper presents the sequential Gaussian simulation in geostatistics for measuring signal and noise variances in images without the need of training data for the BLUE filter implementation. The simulated signal variance and the BLUE average can be further used as parameters of the adaptive Wiener filter for image restoration.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2015. Vol. 22, nr 11, s. 1950-1954
Nyckelord [en]
Adaptive Wiener filter, best linear unbiased estimator, image restoration, kriging, optimal average filter, sequential Gaussian simulation
Nationell ämneskategori
Medicinteknik Signalbehandling
Identifikatorer
URN: urn:nbn:se:liu:diva-128596DOI: 10.1109/LSP.2015.2448732ISI: 000357620000001Scopus ID: 2-s2.0-84936805177OAI: oai:DiVA.org:liu-128596DiVA, id: diva2:930714
Tillgänglig från: 2016-05-25 Skapad: 2016-05-25 Senast uppdaterad: 2017-12-07Bibliografiskt granskad

Open Access i DiVA

fulltext(312 kB)147 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 312 kBChecksumma SHA-512
a711becc26a6296fc33bbcc92ddb344935c02b39ef75efd1735a650550cf1d79e9a315bfce7f713d1dc0d79d79e71d8b30fa94f77ecf403b350534f706b74370
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Personposter BETA

Pham, Tuan D

Sök vidare i DiVA

Av författaren/redaktören
Pham, Tuan D
I samma tidskrift
IEEE Signal Processing Letters
MedicinteknikSignalbehandling

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 147 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 118 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf