liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Highway Traffic State Estimation and Short-term Prediction
Linköpings universitet, Institutionen för teknik och naturvetenskap, Kommunikations- och transportsystem. Linköpings universitet, Tekniska fakulteten.
2016 (Engelska)Licentiatavhandling, monografi (Övrigt vetenskapligt)
Abstract [en]

Traffic congestion is increasing in almost all large cities, leading to a number of negative effects such as pollution and delays. However, building new roads is not a feasible solution. Instead, the use of the existing road network has to be optimized, together with a shift towards more sustainable transport modes. In order to achieve this there are several challenges that needs to be addressed. One challenge is the ability to provide accurate information about the current and future traffic state. This information is an essential input to the traffic management center and can be used to influence the choices made by the travelers. Accurate information about the traffic state on highways, where the potential to manage and control the traffic in general is very high, would be of great significance for the traffic managers. It would help the traffic managers to take action before the system reaches congestion and limit the effects of it. At the same time, the collection of traffic data is slowly shifting from fixed sensors to more probe based data collection. This requires an adaptation and further development of the traditional traffic models in order for them to handle and take advantage of the characteristics of all types of data, not just data from the traditionally used fixed sensors.

The objective of this thesis is to contribute to the development and implementation of a model for estimation and prediction of the current and future traffic state and to facilitate an adaptation of the model to the conditions of the highway in Stockholm. The model used is a version of the Cell Transmission Model (CTM-v) where the velocity is used as the state variable. Thus, together with an Ensemble Kalman Filter (EnKF) it can be used to fuse different types of point speed measurements. The model is developed to run in real-time for a large network. Furthermore, a two-stage process used to calibrate the model is implemented. The results from the calibration and validation show that once the model is calibrated, the estimated travel times corresponds well with the ground truth travel times collected from Bluetooth sensors.

In order to produce accurate short-term predictions for various networks and conditions it is vital to combine different methods. We have implemented and evaluated a hybrid prediction approach that assimilates parametric and non-parametric short-term traffic state prediction. To predict mainline sensor data we use a neural network, while the CTM-v is ran forward in time in order to predict future traffic states. The results show that both the hybrid approach and the CTM-v prediction without the additional predicted mainline sensor data is superior to a naïve prediction method for longer prediction horizons.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2016. , s. 110
Serie
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1749
Nationell ämneskategori
Transportteknik och logistik Reglerteknik Datorteknik Datavetenskap (datalogi) Kommunikationsvetenskap
Identifikatorer
URN: urn:nbn:se:liu:diva-128617DOI: 10.3384/lic.diva-128617ISBN: 978-91-7685-757-1 (tryckt)OAI: oai:DiVA.org:liu-128617DiVA, id: diva2:930779
Presentation
2016-05-26, K3, Kåkenhus, Campus Norrköping, Linköpings universitet, Norrköping, 13:15 (Svenska)
Opponent
Handledare
Tillgänglig från: 2016-05-25 Skapad: 2016-05-25 Senast uppdaterad: 2019-10-29Bibliografiskt granskad

Open Access i DiVA

fulltext(4052 kB)406 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4052 kBChecksumma SHA-512
f52ab2804a2833a2020cf247b48054e03d78d85d393550bb590dac5305c3e45b2cea78c25df8cacb4ca7931ff002f6dad949460a6ad6bec72c99422bc0513749
Typ fulltextMimetyp application/pdf
omslag(22 kB)41 nedladdningar
Filinformation
Filnamn COVER01.pdfFilstorlek 22 kBChecksumma SHA-512
dec6784b3825b5eea41836843543e6ebb25d76e84fb9c2a1dea506287537aee10869d53e438697bf45df56c13e0632439eaa5743e50168343cebb0413829526f
Typ coverMimetyp application/pdf
Beställ online >>

Övriga länkar

Förlagets fulltext

Personposter BETA

Allström, Andreas

Sök vidare i DiVA

Av författaren/redaktören
Allström, Andreas
Av organisationen
Kommunikations- och transportsystemTekniska fakulteten
Transportteknik och logistikReglerteknikDatorteknikDatavetenskap (datalogi)Kommunikationsvetenskap

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 406 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 2017 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf