liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Discrimination between healthy and cancerous lungs with the use of an electronic nose
Linköpings universitet, Institutionen för medicinsk teknik.
2016 (engelsk)Independent thesis Advanced level (degree of Master (Two Years)), 20 poäng / 30 hpOppgave
Abstract [en]

Lung cancer is one of the most serious and common cancer types of today, with very uncomfortable and potentially cumbersome diagnostic techniques in x-ray, CT, CT-PET scans, bronchoscopies and biopsies. Completing all these steps can also take a long time and be time consuming for hospital staff. So finding a new safer and faster technique to diagnose cancer would be of great benefit.

The objectives of this pilot study is to create an effective data storage system that can be scaled for larger data sets in a later study. The aim was also to see whether a E-nose can be used to find the differences in smell-prints from a healthy lung and a cancerous lung. As well as seeing if the E-nose can distinguish samples drawn from the lungs from exhaled air samples.

Samples were taken on patients by the staff at ”Lung kliniken” at Link¨oping University Hospital during a bronchoscopy on patients with one-sided lung cancer. These samples were then analyzed by the E-nose which sensory response is later used to test the classification system that uses a mix of Principal Component Analysis (PCA) and K-Nearest Neighbour (KNN). Using a k = 7, the system was able to correctly classify 60 % of the samples when comparing cancerous and healthy lung samples. Comparing exhaled, healthy and cancerous samples the accuracy was calculated to 55.56 %. Comparing all lung samples against exhaled samples the accuracy was 86.67 %

sted, utgiver, år, opplag, sider
2016. , s. 36
Emneord [en]
Electronic nose
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-129563ISRN: LiTH-IMT/BIT30-A-EX--16/535--SEOAI: oai:DiVA.org:liu-129563DiVA, id: diva2:940804
Fag / kurs
Medical Technology
Veileder
Examiner
Tilgjengelig fra: 2016-06-22 Laget: 2016-06-21 Sist oppdatert: 2016-06-22bibliografisk kontrollert

Open Access i DiVA

fulltext(898 kB)154 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 898 kBChecksum SHA-512
812db77e8a0d4215d6666da7bc4eec8d076e32ff92bca0b77042be3be9eee20f3b2ad6b73e8fd08bde45953dc7a6cc609cb1380bfec0e5edb12c1b1c8baf1f90
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Bäckström, Martin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 154 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 339 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf