liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Thermoelectric Polymers and their Elastic Aerogels
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.ORCID-id: 0000-0002-2904-7238
KTH Royal Institute Technology, Sweden.
Linköpings universitet, Institutionen för teknik och naturvetenskap, Fysik och elektroteknik. Linköpings universitet, Tekniska fakulteten.
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095, Vol. 28, nr 22, s. 4556-4562Artikel i tidskrift (Refereegranskat) Published
Resurstyp
Text
Abstract [en]

Electronically conducting polymers constitute an emerging class of materials for novel electronics, such as printed electronics and flexible electronics. Their properties have been further diversified to introduce elasticity, which has opened new possibility for "stretchable" electronics. Recent discoveries demonstrate that conducting polymers have thermoelectric properties with a low thermal conductivity, as well as tunable Seebeck coefficients - which is achieved by modulating their electrical conductivity via simple redox reactions. Using these thermoelectric properties, all-organic flexible thermoelectric devices, such as temperature sensors, heat flux sensors, and thermoelectric generators, are being developed. In this article we discuss the combination of the two emerging fields: stretchable electronics and polymer thermoelectrics. The combination of elastic and thermoelectric properties seems to be unique for conducting polymers, and difficult to achieve with inorganic thermoelectric materials. We introduce the basic concepts, and state of the art knowledge, about the thermoelectric properties of conducting polymers, and illustrate the use of elastic thermoelectric conducting polymer aerogels that could be employed as temperature and pressure sensors in an electronic-skin.

Ort, förlag, år, upplaga, sidor
WILEY-V C H VERLAG GMBH , 2016. Vol. 28, nr 22, s. 4556-4562
Nationell ämneskategori
Polymerkemi
Identifikatorer
URN: urn:nbn:se:liu:diva-129660DOI: 10.1002/adma.201505364ISI: 000377123500029PubMedID: 26836440OAI: oai:DiVA.org:liu-129660DiVA, id: diva2:943249
Anmärkning

Funding Agencies|European Research Council (ERC) [307596]; Swedish Foundation for Strategic Research; Knut and Alice Wallenberg Foundation; Swedish Energy Agency; Advanced Functional Materials Center at Linkoping University; Research Institute of Sweden (RISE)

Tillgänglig från: 2016-06-27 Skapad: 2016-06-23 Senast uppdaterad: 2018-09-07
Ingår i avhandling
1. Flexible and Cellulose-based Organic Electronics
Öppna denna publikation i ny flik eller fönster >>Flexible and Cellulose-based Organic Electronics
2017 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Organic electronics is the study of organic materials with electronic functionality and the applications of such materials. In the 1970s, the discovery that polymers can be made electrically conductive led to an explosion within this field which has continued to grow year by year. One of the attractive features of organic electronic materials is their inherent mechanical flexibility, which has led to the development of numerous flexible electronics technologies such as organic light emitting diodes and solar cells on flexible substrates. The possibility to produce electronics on flexible substrates like plastic or paper has also had a large impact on the field of printed, electronics where inks with electronic functionality are used for large area fabrication of electronic devices using classical printing methods, such as screen printing, inkjet printing and flexography.

Recently, there has been a growing interest in the use of cellulose in organic and printed electronics, not only as a paper substrate but also as a component in composite materials where the cellulose provides mechanical strength and favorable 3D-microstructures. Nanofibrillated cellulose is composed of cellulose fibers with high aspect-ratio and diameters in the nanometer range. Due to its remarkable mechanical strength, large area-to-volume ratio, optical transparency and solution processability it has been widely used as a scaffold or binder for electronically active materials in applications such as batteries, supercapacitors and optoelectronics.

The focus of this thesis is on flexible devices based on conductive polymers and can be divided into two parts: (1) Composite materials of nanofibrillated cellulose and the conductive polymer PEDOT:PSS and (2) patterning of vapor phase polymerized conductive polymers. In the first part, it is demonstrated how the combination of cellulose and conductive polymers can be used to make electronic materials of various form factors and functionality. Thick, freestanding and flexible “papers” are used to realize electrochemical devices such as transistors and supercapacitors while lightweight, porous and elastic aerogels are used for sensor applications. The second focus of the thesis is on a novel method of patterning conductive polymers produced by vapor phase polymerization using UV-light. This method is used to realize flexible electrochromic smart windows with high-resolution images and tunable optical contrast.

Ort, förlag, år, upplaga, sidor
Linköping: Linköping University Electronic Press, 2017. s. 73
Serie
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1845
Nyckelord
Organic electronics, conductive polymers, nanocellulose, nanofibrillated cellulose, composite materials, paper electronics, flexible electronics
Nationell ämneskategori
Annan fysik
Identifikatorer
urn:nbn:se:liu:diva-136518 (URN)10.3384/diss.diva-1089149 (DOI)978-91-7685-542-3 (ISBN)
Disputation
2017-05-19, K3, Kåkenhus, Campus Norrköping, Norrköping, 10:15 (Engelska)
Opponent
Handledare
Forskningsfinansiär
Knut och Alice Wallenbergs Stiftelse, KAW 2011.0050Stiftelsen för strategisk forskning (SSF), GMT14-0058
Tillgänglig från: 2017-05-04 Skapad: 2017-04-18 Senast uppdaterad: 2019-10-11Bibliografiskt granskad

Open Access i DiVA

fulltext(1162 kB)188 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1162 kBChecksumma SHA-512
97199afd03b218e8cf3af09c645a5359703640525387c7eb5d27b1e6e51b38380f66109141eac229ceb29ba8812817dcee6a37aed858fcb3b53f9d6e71b4a7bd
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Ullah Khan, ZiaEdberg, JesperGabrielsson, RogerEngquist, IsakBerggren, MagnusCrispin, Xavier

Sök vidare i DiVA

Av författaren/redaktören
Ullah Khan, ZiaEdberg, JesperGabrielsson, RogerEngquist, IsakBerggren, MagnusCrispin, Xavier
Av organisationen
Fysik och elektroteknikTekniska fakulteten
I samma tidskrift
Advanced Materials
Polymerkemi

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 188 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 1578 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf