liu.seSearch for publications in DiVA
Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates
Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Institutionen för datavetenskap, Statistik. Linköpings universitet, Tekniska fakulteten.
University of Warwick, England.
Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska fakulteten.
2016 (engelsk)Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, nr 28, s. 7900-7905Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The most widely used task functional magnetic resonance imaging (fMRI) analyses use parametric statistical methods that depend on a variety of assumptions. In this work, we use real resting-state data and a total of 3 million random task group analyses to compute empirical familywise error rates for the fMRI software packages SPM, FSL, and AFNI, as well as a nonparametric permutation method. For a nominal familywise error rate of 5%, the parametric statistical methods are shown to be conservative for voxelwise inference and invalid for clusterwise inference. Our results suggest that the principal cause of the invalid cluster inferences is spatial autocorrelation functions that do not follow the assumed Gaussian shape. By comparison, the nonparametric permutation test is found to produce nominal results for voxelwise as well as clusterwise inference. These findings speak to the need of validating the statistical methods being used in the field of neuroimaging.

sted, utgiver, år, opplag, sider
National Academy of Sciences , 2016. Vol. 113, nr 28, s. 7900-7905
Emneord [en]
fMRI, statistics, false positives, familywise error rate, permutation test, cluster inference
HSV kategori
Identifikatorer
URN: urn:nbn:se:liu:diva-129884DOI: 10.1073/pnas.1602413113ISI: 000379694100060PubMedID: 27357684OAI: oai:DiVA.org:liu-129884DiVA, id: diva2:944913
Forskningsfinansiär
Swedish Research Council, 2013-5229Wellcome trust
Merknad

Funding agencies:We thank Robert Cox, Stephen Smith, Mark Woolrich, Karl Friston, and Guillaume Flandin, who gave us valuable feedback on this work. This study would not be possible without the recent data-sharing initiatives in the neuroimaging field. We therefore thank the Neuroimaging Informatics Tools and Resources Clearinghouse and all of the researchers who have contributed with resting-state data to the 1,000 Functional Connectomes Project. Data were also provided by the Human Connectome Project, WU-Minn Consortium (principal investigators: David Van Essen and Kamil Ugurbil; Grant 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research, and by the McDonnell Center for Systems Neuroscience at Washington University. We also thank Russ Poldrack and his colleagues for starting the OpenfMRI Project (supported by National Science Foundation Grant OCI-1131441) and all of the researchers who have shared their task-based data. The Nvidia Corporation, which donated the Tesla K40 graphics card used to run all the permutation tests, is also acknowledged. This research was supported by the Neuroeconomic Research Initiative at Linkoping University, by Swedish Research Council Grant 2013-5229 ("Statistical Analysis of fMRI Data"), the Information Technology for European Advancement 3 Project BENEFIT (better effectiveness and efficiency by measuring and modelling of interventional therapy), and the Wellcome Trust.

Tilgjengelig fra: 2016-06-30 Laget: 2016-06-30 Sist oppdatert: 2017-11-28

Open Access i DiVA

fulltext(4509 kB)613 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4509 kBChecksum SHA-512
687c481062cb845597c59670925361c006768c181335eb52c18622f10acab8f80361b793ac1f820d4426f29fef1c304d2181b2996e66f94c05119cb4b91393ac
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Personposter BETA

Eklund, AndersKnutsson, Hans

Søk i DiVA

Av forfatter/redaktør
Eklund, AndersKnutsson, Hans
Av organisasjonen
I samme tidsskrift
Proceedings of the National Academy of Sciences of the United States of America

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 613 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 1630 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf