liu.seSök publikationer i DiVA
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates
Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Institutionen för datavetenskap, Statistik. Linköpings universitet, Tekniska fakulteten.
University of Warwick, England.
Linköpings universitet, Centrum för medicinsk bildvetenskap och visualisering, CMIV. Linköpings universitet, Institutionen för medicinsk teknik, Medicinsk informatik. Linköpings universitet, Tekniska fakulteten.
2016 (Engelska)Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, nr 28, s. 7900-7905Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The most widely used task functional magnetic resonance imaging (fMRI) analyses use parametric statistical methods that depend on a variety of assumptions. In this work, we use real resting-state data and a total of 3 million random task group analyses to compute empirical familywise error rates for the fMRI software packages SPM, FSL, and AFNI, as well as a nonparametric permutation method. For a nominal familywise error rate of 5%, the parametric statistical methods are shown to be conservative for voxelwise inference and invalid for clusterwise inference. Our results suggest that the principal cause of the invalid cluster inferences is spatial autocorrelation functions that do not follow the assumed Gaussian shape. By comparison, the nonparametric permutation test is found to produce nominal results for voxelwise as well as clusterwise inference. These findings speak to the need of validating the statistical methods being used in the field of neuroimaging.

Ort, förlag, år, upplaga, sidor
National Academy of Sciences , 2016. Vol. 113, nr 28, s. 7900-7905
Nyckelord [en]
fMRI, statistics, false positives, familywise error rate, permutation test, cluster inference
Nationell ämneskategori
Medicinsk bildbehandling Sannolikhetsteori och statistik
Identifikatorer
URN: urn:nbn:se:liu:diva-129884DOI: 10.1073/pnas.1602413113ISI: 000379694100060PubMedID: 27357684OAI: oai:DiVA.org:liu-129884DiVA, id: diva2:944913
Forskningsfinansiär
Vetenskapsrådet, 2013-5229Wellcome trust
Anmärkning

Funding agencies:We thank Robert Cox, Stephen Smith, Mark Woolrich, Karl Friston, and Guillaume Flandin, who gave us valuable feedback on this work. This study would not be possible without the recent data-sharing initiatives in the neuroimaging field. We therefore thank the Neuroimaging Informatics Tools and Resources Clearinghouse and all of the researchers who have contributed with resting-state data to the 1,000 Functional Connectomes Project. Data were also provided by the Human Connectome Project, WU-Minn Consortium (principal investigators: David Van Essen and Kamil Ugurbil; Grant 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research, and by the McDonnell Center for Systems Neuroscience at Washington University. We also thank Russ Poldrack and his colleagues for starting the OpenfMRI Project (supported by National Science Foundation Grant OCI-1131441) and all of the researchers who have shared their task-based data. The Nvidia Corporation, which donated the Tesla K40 graphics card used to run all the permutation tests, is also acknowledged. This research was supported by the Neuroeconomic Research Initiative at Linkoping University, by Swedish Research Council Grant 2013-5229 ("Statistical Analysis of fMRI Data"), the Information Technology for European Advancement 3 Project BENEFIT (better effectiveness and efficiency by measuring and modelling of interventional therapy), and the Wellcome Trust.

Tillgänglig från: 2016-06-30 Skapad: 2016-06-30 Senast uppdaterad: 2017-11-28

Open Access i DiVA

fulltext(4509 kB)573 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 4509 kBChecksumma SHA-512
687c481062cb845597c59670925361c006768c181335eb52c18622f10acab8f80361b793ac1f820d4426f29fef1c304d2181b2996e66f94c05119cb4b91393ac
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Eklund, AndersKnutsson, Hans

Sök vidare i DiVA

Av författaren/redaktören
Eklund, AndersKnutsson, Hans
Av organisationen
Centrum för medicinsk bildvetenskap och visualisering, CMIVMedicinsk informatikStatistikTekniska fakulteten
I samma tidskrift
Proceedings of the National Academy of Sciences of the United States of America
Medicinsk bildbehandlingSannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 573 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 1582 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf