liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sharp exponents and a Wiener type condition for boundary regularity of quasiminimizers
Linköping University, Department of Mathematics, Mathematics and Applied Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-1238-6751
2016 (English)In: Advances in Mathematics, ISSN 0001-8708, E-ISSN 1090-2082, Vol. 301, 804-819 p.Article in journal (Refereed) Published
Abstract [en]

We obtain a sufficient condition for boundary regularity of quasiminimirers of the p-energy integral in terms of a Wiener type sum. The exponent in the sum is independent of the dimension and is explicitly expressed in terms of p and the quasiminimizing constant. We also show by an example that the exponent is sharp in a certain sense. (C) 2016 Elsevier Inc. All rights reserved.

Place, publisher, year, edition, pages
ACADEMIC PRESS INC ELSEVIER SCIENCE , 2016. Vol. 301, 804-819 p.
Keyword [en]
Boundary regularity; Capacity; Power function; Quasiminimizer; Quasiminimizing potential; Regular point; Wiener criterion
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:liu:diva-131653DOI: 10.1016/j.aim.2016.06.024ISI: 000382424900022OAI: oai:DiVA.org:liu-131653DiVA: diva2:1014974
Note

Funding Agencies|Swedish Research Council [2011-3139]

Available from: 2016-10-03 Created: 2016-09-30 Last updated: 2017-11-30

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Björn, Jana
By organisation
Mathematics and Applied MathematicsFaculty of Science & Engineering
In the same journal
Advances in Mathematics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 49 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf