liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mutation-Induced Population Shift in the MexR Conformational Ensemble Disengages DNA Binding: A Novel Mechanism for MarR Family Derepression
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Bioinformatics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering. University of Sydney, Australia.
Show others and affiliations
2016 (English)In: Structure, ISSN 0969-2126, E-ISSN 1878-4186, Vol. 24, no 8, p. 1311-1321Article in journal (Refereed) Published
Abstract [en]

MexR is a repressor of the MexAB-OprM multidrug efflux pump operon of Pseudomonas aeruginosa, where DNA-binding impairing mutations lead to multidrug resistance (MDR). Surprisingly, the crystal structure of an MDR-conferring MexR mutant R21W (2.19 angstrom) presented here is closely similar to wildtype MexR. However, our extended analysis, by molecular dynamics and small-angle X-ray scattering, reveals that the mutation stabilizes a ground state that is deficient of DNA binding and is shared by both mutant and wild-type MexR, whereas the DNA-binding state is only transiently reached by the more flexible wild-type MexR. This population shift in the conformational ensemble is effected by mutation-induced allosteric coupling of contact networks that are independent in the wild-type protein. We propose that the MexR-R21W mutant mimics derepression by small-molecule binding to MarR proteins, and that the described allosteric model based on population shifts may also apply to other MarR family members.

Place, publisher, year, edition, pages
CELL PRESS , 2016. Vol. 24, no 8, p. 1311-1321
National Category
Structural Biology
Identifiers
URN: urn:nbn:se:liu:diva-131908DOI: 10.1016/j.str.2016.06.008ISI: 000383244600012PubMedID: 27427478OAI: oai:DiVA.org:liu-131908DiVA, id: diva2:1034861
Note

Funding Agencies|European Communitys Seventh Framework Program (FP7) under BioStruct-X [283570]; Swedish e-Science Research Center; Swedish Research Council; Tage Erlander Visiting Professor grant.

The original status of this article was Manuscript and the titel was Population shift disengages DNA binding in a multidrug resistance MexR mutant.

Available from: 2016-10-13 Created: 2016-10-11 Last updated: 2018-05-06
In thesis
1. Structural insights into protein-protein interactions governing regulation in transcription initiation and ubiquitination
Open this publication in new window or tab >>Structural insights into protein-protein interactions governing regulation in transcription initiation and ubiquitination
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Virtually every aspect of the cellular processes in eukaryotes requires that the interactions between protein molecules are well coordinated in different regulatory pathways. Any protein dysfunction involved in these regulatory pathways might lead to various pathological conditions. Understanding the structural and functional peculiarities of these proteins molecular machineries will help in formulating structure-based drug design.

The first regulatory process studied here is the RNA polymerase-II mediated transcription of the eukaryotic protein-coding genes to produce mRNAs. This process requires the formation of the ‘transcription initiation’ by the assembly of Pre-Initiation Complex (PIC) formation at a core promoter region. Regulation at this initiation level is a key mechanism for the control of gene expression that governs cellular growth and differentiation. The transcription Factor IID (TFIID) is a conserved multiprotein general transcription factor with an essential role in  nucleating the PIC formation, composed of TATA Binding Protein (TBP) and about 14 TBP Associated Factors (TAFs). The here presented crystal structure (1.97Å) of TBP bound to TAND1 and TAND2 domains from TAF1 reveals a detailed molecular pattern of interactions involving both transcriptionally activating and repressing regions in TBP, thereby uncovering central principles for anchoring of TBP-binding motifs. Together with NMR and cellular analysis, this work provides the structural basis of competitive binding with TFIIA to modulate TBP in promoter recognition.

In eukaryotes, another fundamental mechanism in the regulation of cellular physiology is the posttranslational modification of substrate proteins by ubiquitin, termed ‘ubiquitination’. Important actors in this mechanism are the ubiquitin-ligases (E3s) that culminate the transfer of ubiquitin to the substrate and govern the specificity of this system. One E3 ligase in particular, TRIM21, defines a subgroup of the Tripartite Motif (TRIM) family, which belongs to the major RING-type of E3 ubiquitin ligases, and plays an important role in pathogenesis of autoimmunity by mediating ubiquitination of transcription factors. The crystal structure (2.86Å) of the RING domain from TRIM21 in complex with UBE2E1, an E2 conjugating enzyme, together with the NMR and SAXS analysis as well as biochemical functional analysis, reveals the molecular basis for the dynamic binding interfaces. The TRIM21 mode of ubiquitin recognition and activation for catalytic transfer of ubiquitin can be modeled onto the entire TRIM family.

Finally, we explored the concepts of conformational selection in proteins as a possible key component for protein-mediated transcriptional regulation. In this framework, MexR, a bacterial repressor of the MexAB-OprM efflux pump, and its mutant Arg21Trp were studied as an example for proteins presenting different conformations. The residue Arg21Trp mutation is clinically identified to cause of Multi-Drug Resistant (MDR) by attenuated DNA binding, and leads to the overexpression of the MexAB-OprM efflux pump. With the crystal structure (2.19Å) of MexR mutant Arg21Trp, in combination with MD-simulations and SAXS for both wild-type and mutant, we could unravel the atomic details of the wild-type conformations consisting in subsets of populations of DNA bound and unbound forms. Remarkably, the mutant Arg21Trp stabilize the DNA unbound state and shifts MexR in a pre-existing equilibrium, from a repressed to a derepressed state.

Taken together, these studies substantially broaden our knowledge at a molecular level in protein interactions that are involved in transcriptional regulation and ubiquitination, studied by a carefully selected combination of complementary structural methods spanning different resolutions and time scales.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. p. 73
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1694
National Category
Chemical Sciences Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:liu:diva-122468 (URN)10.3384/diss.diva-122468 (DOI)978-91-7685-984-1 (ISBN)
Public defence
2015-12-04, Planck, Fysikhuset, Campus Valla, Linköping, 09:30 (English)
Opponent
Supervisors
Available from: 2015-11-03 Created: 2015-11-03 Last updated: 2017-01-10Bibliographically approved
2. On protein structure, function and modularity from an evolutionary perspective
Open this publication in new window or tab >>On protein structure, function and modularity from an evolutionary perspective
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Om proteinstruktur, -function och modularitet ur en evolutionär synvinkel
Abstract [en]

We are compounded entities, given life by a complex molecular machinery. When studying these molecules we have to make sense of a diverse set of dynamical nanostructures with wast and intricate patterns of interactions. Protein polymers is one of the major groups of building blocks of such nanostructures which fold up into more or less distinct three dimensional structures. Due to their shape, dynamics and chemical properties proteins are able to perform a plethora of specific functions essential to all known cellular lifeforms.

The connection between protein sequence, translated into protein structure and in the continuation into protein function is well accepted but poorly understood. Malfunction in the process of protein folding is known to be implicated in natural aging, cancer and degenerative diseases such as Alzheimer's.

Protein folds are described hierarchically by structural ontologies such as SCOP, CATH and Pfam all which has yet to succeed in deciphering the natural language of protein function. These paradigmatic views centered on protein structure fail to describe more mutable entities, such as intrinsically disordered proteins (IDPs) which lack a clear defined structure.

As of 2012, about two thirds of cancer patients was predicted to survive past 5 years of diagnosis. Despite this, about a third do not survive and numerous of successfully treated patients suffer from secondary conditions due to chemotherapy, surgery and the like. In order to handle cancer more efficiently we have to better understand the underlying molecular mechanisms.

Elusive to standard methods of investigation, IDPs have a central role in pathology; dysfunction in IDPs are key factors in cellular system failures such as cancer, as many IDPs are hub regulators for major cell functions. These IDPs carry short conserved functional boxes, that are not described by known ontologies, which suggests the existence of a smaller entity. In an investigation of a pair of such boxes of c-MYC, a plausible structural model of its interacting with Pin1 emerged, but such a model still leaves the observer with a puzzle of understanding the actual function of that interaction.

If the protein is represented as a graph and modeled as the interaction patterns instead of as a structural entity, another picture emerges. As a graph, there is a parable from that of the boxes of IDPs, to that of sectors of allosterically connected residues and the theory of foldons and folding units. Such a description is also useful in deciphering the implications of specific mutations.

In order to render a functional description feasible for both structured and disordered proteins, there is a need of a model separate from form and structure. Realized as protein primes, patterns of interaction, which has a specific function that can be defined as prime interactions and context. With function defined as interactions, it might be possible that the discussion of proteins and their mechanisms is thereby simplified to the point rendering protein structural determination merely supplementary to understanding protein function.

Abstract [sv]

Människan byggs upp av celler, de i sin tur består av än mindre beståndsdelar; livets molekyler. Dessa fungerar som mekaniska byggstenar, likt maskiner och robotar som sliter vid fabrikens band; envar utförandes en absolut nödvändig funktion för cellens, och hela kroppens, fortsatta överlevnad. De av livets molekyler som beskrivs centralt i den här avhandling är proteiner, vilka i sin tur består utav en lång kedja, med olika typer av länkar, som likt garn lindar upp sig i ett nystan av en (mer eller mindre...) bestämd struktur som avgör dess roll och funktion i cellen.

Intrinsiellt oordnade proteiner (IDP) går emot denna enkla åskådning; de är proteiner som saknar struktur och beter sig mer likt spaghetti i vatten än en maskin. IDP är ändå funktionella och bär på centrala roller i cellens maskineri; exempel är oncoproteinet c-Myc som agerar "gaspedal" för cellen - fel i c-Myc's funktion leder till att cellerna löper amok, delar sig hejdlöst och vi får cancer.

Man har upptäckt att c-Myc har en ombytlig struktur vi inte kan se; studier av punktvisa förändringar, mutationer, i kedjan av byggstenar hos c-Myc visar att många länkar har viktiga roller i funktionen. Detta ger oss bättre förståelse om cancer men samtidigt är laboratoriearbetet både komplicerat och dyrt; här kan evolutionen vägleda oss och avslöja hemligheterna snabbare.

Molekylär evolution studeras genom att beräkna variation i proteinkedjan mellan besläktade arter som finns lagrade i databaser; detta visar snabbt, via nätverksanalys och grafteori, vilka delar av proteinet som är centrala och kopplade till varandra av nödvändighet för artens fortlevnad. På så vis hjälper evolutionen oss att förstå proteinfunktioner via modeller baserade på proteinernas interaktioner snarare än deras struktur.

Samma modeller kan nyttjas för att förstå dynamiska förlopp och skillnader mellan normala och patologiska varianter av proteiner; mutationer kan uppstå i vår arvsmassa som kan leda till sjukdom. Genom analys av proteinernas kopplingsnätverk i grafmodellerna kan man bättre förutsäga vilka mutationer som är farligare än andra. Dessutom har det visat sig att en sådan representation kan ge bättre förståelse för den normala funktionen hos ett protein än vad en proteinstruktur kan.

Här introduceras även konceptet proteinprimärer, vilket är en abstrakt representation av proteiner centrerad på deras interaktiva mönster, snarare än på partikulär form och struktur. Det är en förhoppning att en sådan representation skall förenkla diskussionen anbelangande proteinfunktion så till den grad att strukturbestämmelse av proteiner, som är en mycket kostsam och tidskrävande process, till viss mån kan anses vara sekundär i betydelse jämfört med funktionellt modellerande baserat på evolutionära data extraherade ur våra sekvensdatabaser.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 77
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1914
Keywords
bioinformatics, structure, biology, intrinsical, disorder, protein, sequence, evolution, mutation, epistasis, function, allostery, dynamics, simulation, prediction, graph, network, bioinformatik, struktur, biologi, strukturbiologi, intrinsiellt, oordnad, protein, sekvens, evolution, mutation, epistasis, funktion, allosteri, dynamik, simulation, prediktion, graf, nätverk
National Category
Bioinformatics and Systems Biology
Identifiers
urn:nbn:se:liu:diva-147697 (URN)10.3384/diss.diva-147697 (DOI)9789176853474 (ISBN)
Public defence
2018-06-05, Planck, Hus F, Linköpings universitet, Linköping, 14:00 (English)
Opponent
Supervisors
Note

In the electronic version of the dissertation, the corrections from both errata lists have been carried out.

Available from: 2018-05-23 Created: 2018-05-06 Last updated: 2018-05-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Anandapadmanaban, MadhanagopalPilstål, RobertAndrésen, CeciliaTrewhella, JillWallner, BjörnSunnerhagen, Maria
By organisation
Department of Physics, Chemistry and BiologyFaculty of Science & EngineeringBioinformaticsChemistry
In the same journal
Structure
Structural Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 223 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf