liu.seSearch for publications in DiVA

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt155",{id:"formSmash:upper:j_idt155",widgetVar:"widget_formSmash_upper_j_idt155",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt157_j_idt159",{id:"formSmash:upper:j_idt157:j_idt159",widgetVar:"widget_formSmash_upper_j_idt157_j_idt159",target:"formSmash:upper:j_idt157:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Invariant K-minimal Sets in the Discrete and Continuous SettingsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)In: Journal of Fourier Analysis and Applications, ISSN 1069-5869, E-ISSN 1531-5851, 1-40 p.Article in journal (Refereed) Epub ahead of print
##### Abstract [en]

##### Place, publisher, year, edition, pages

Springer, 2016. 1-40 p.
##### Keyword [en]

Invariant K-minimal sets, Taut strings, Real interpolation
##### National Category

Mathematical Analysis
##### Identifiers

URN: urn:nbn:se:liu:diva-132425DOI: 10.1007/s00041-016-9479-5OAI: oai:DiVA.org:liu-132425DiVA: diva2:1045672
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt407",{id:"formSmash:j_idt407",widgetVar:"widget_formSmash_j_idt407",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt413",{id:"formSmash:j_idt413",widgetVar:"widget_formSmash_j_idt413",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt419",{id:"formSmash:j_idt419",widgetVar:"widget_formSmash_j_idt419",multiple:true});
Available from: 2016-11-10 Created: 2016-11-10 Last updated: 2016-12-01Bibliographically approved
##### In thesis

A sufficient condition for a set Ω ⊂ *L*^{1}([0,1]^{m} to be invariant K-minimal with respect to the couple (*L*^{1}([0,1]^{m})), *L*^{∞}([0,1]^{m}) is established. Through this condition, different examples of invariant *K*-minimal sets are constructed. In particular, it is shown that the *L*^{1}-closure of the image of the *L*^{∞}-ball of smooth vector fields with support in (0,1)^{m}, under the divergence operator is an invariant *K*-minimal set. The constructed examples have finite-dimensional analogues in terms of invariant *K*-minimal sets with respect to the couple (ℓ^{1}, ℓ^{∞}) on *R*^{n} . These finite-dimensional analogues are interesting in themselves and connected to applications where the element with minimal *K*-functional is important. We provide a convergent algorithm for computing the element with minimal *K*-functional in these and other finite-dimensional invariant K-minimal sets.

1. Taut Strings and Real Interpolation$(function(){PrimeFaces.cw("OverlayPanel","overlay1045576",{id:"formSmash:j_idt706:0:j_idt710",widgetVar:"overlay1045576",target:"formSmash:j_idt706:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1233",{id:"formSmash:lower:j_idt1233",widgetVar:"widget_formSmash_lower_j_idt1233",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1235_j_idt1245",{id:"formSmash:lower:j_idt1235:j_idt1245",widgetVar:"widget_formSmash_lower_j_idt1235_j_idt1245",target:"formSmash:lower:j_idt1235:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});