liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Untargeted screening of unknown xenobiotics and potential toxins in plasma of poisoned patients using high-resolution mass spectrometry: Generation of xenobiotic fingerprint using background subtraction
Huazhong University of Science and Technology, Peoples R China.
Linköping University, Department of Medical and Health Sciences, Division of Drug Research. Linköping University, Faculty of Medicine and Health Sciences. National Board Forens Med, Linköping, Sweden.
Maternal and Child Health Hospital Hubei Prov, Peoples R China.
Jiangxi University of Tradit Chinese Med, Peoples R China.
Show others and affiliations
2016 (English)In: Analytica Chimica Acta, ISSN 0003-2670, E-ISSN 1873-4324, Vol. 944, 37-43 p.Article in journal (Refereed) Published
Abstract [en]

A novel analytical workflow was developed and applied for the detection and identification of unknown xenobiotics in biological samples. High-resolution mass spectrometry (HRMS)-based data-independent MSE acquisition was employed to record full scan MS and fragment spectral datasets of test and control samples. Then, an untargeted data-mining technique, background subtraction, was utilized to find xenobiotics present only in test samples. Structural elucidation of the detected xenobiotics was accomplished by database search, spectral interpretation, and/or comparison with reference standards. Application of the workflow to analysis of unknown xenobiotics in plasma samples collected from four poisoned patients led to generation of xenobiotic profiles, which were regarded as xenobiotic fingerprints of the individual samples. Among 19 xenobiotics detected, 11 xenobiotics existed in a majority of the patients plasma samples, thus were considered as potential toxins. The follow-up database search led to the tentative identification of azithromycin (X5), alpha-chaconine (X9) and penfluridol (X12). The identity of X12 was further confirmed with its reference standard. In addition, one xenobiotic component (Y5) was tentatively identified as a penfluridol metabolite. The remaining unidentified xenobiotics listed in the xenobiotic fingerprints can be further characterized or identified in retrospective analyses after their spectral data and/or reference compounds are available. This HRMS-based workflow may have broad applications in the detection and identification of unknown xenobiotics in individual biological samples, such as forensic and toxicological analysis and sport enhancement drug screening. (C) 2016 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV , 2016. Vol. 944, 37-43 p.
Keyword [en]
High-resolution mass spectrometry; Background subtraction; Untargeted data-mining; Unknown xenobiotics; Database search; Toxic chemicals
National Category
Analytical Chemistry
URN: urn:nbn:se:liu:diva-132506DOI: 10.1016/j.aca.2016.09.034ISI: 000385841200004PubMedID: 27776637OAI: diva2:1046508

Funding Agencies|General Financial Grant from China Postdoctoral Science Foundation [2014M550396]; Postdoctoral Grant from Huazhong University of Science and Technology

Available from: 2016-11-14 Created: 2016-11-13 Last updated: 2016-11-14

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Wohlfarth, Ariane
By organisation
Division of Drug ResearchFaculty of Medicine and Health Sciences
In the same journal
Analytica Chimica Acta
Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 11 hits
ReferencesLink to record
Permanent link

Direct link