liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multidirectional WSS disturbances in stenotic turbulent flows: A pre- and post-intervention study in an aortic coarctation
Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-4656-7662
Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences.ORCID iD: 0000-0003-1942-7699
Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Heart and Medicine Center, Department of Clinical Physiology in Linköping. Linköping University, Center for Medical Image Science and Visualization (CMIV).ORCID iD: 0000-0003-1395-8296
Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).ORCID iD: 0000-0001-5526-2399
2017 (English)In: Journal of Biomechanics, ISSN 0021-9290, E-ISSN 1873-2380, Vol. 51Article in journal (Refereed) Published
Abstract [en]

Wall shear stress (WSS) disturbances are commonly expressed at sites of abnormal flow obstructions and may play an essential role in the pathogenesis of various vascular diseases. In laminar flows these disturbances have recently been assessed by the transverse wall shear stress (transWSS), which accounts for the WSS multidirectionality. Site-specific estimations of WSS disturbances in pulsatile transitional and turbulent type of flows are more challenging due to continuous and unpredictable changes in WSS behavior. In these complex flow settings, the transWSS may serve as a more comprehensive descriptor for assessing WSS disturbances of general nature compared to commonly used parameters. In this study large eddy simulations (LES) were used to investigate the transWSS properties in flows subjected to different pathological turbulent flow conditions, governed by a patient-specific model of an aortic coarctation pre and post balloon angioplasty. Results showed that regions of strong near-wall turbulence were collocated with regions of elevated transWSS and turbulent WSS, while in more transitional-like near-wall flow regions a closer resemblance was found between transWSS and low, and oscillatory WSS. Within the frame of this study, the transWSS parameter demonstrated a more multi-featured picture of WSS disturbances when exposed to different types of flow regimes, characteristics which were not depicted by the other parameters alone. (C) 2016 Published by Elsevier Ltd.

Place, publisher, year, edition, pages
ELSEVIER SCI LTD , 2017. Vol. 51
Keywords [en]
Transverse wall shear stress; Turbulent kinetic energy; Large eddy simulation; Hemodynamics; Disturbed blood flow; Oscillatory shear index
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:liu:diva-136073DOI: 10.1016/j.jbiomech.2016.11.064ISI: 000393927500002PubMedID: 27919417OAI: oai:DiVA.org:liu-136073DiVA, id: diva2:1084786
Note

Funding Agencies|Center for Industrial Information Technology (CENIIT) [09.03]; Swedish National Infrastructure for Computing (SNIC) [SNIC 2014/11-22, SNIC2015/16-32]

Available from: 2017-03-27 Created: 2017-03-27 Last updated: 2021-04-26
In thesis
1. Turbulence Descriptors in Arterial Flows: Patient-Specific Computational Hemodynamics
Open this publication in new window or tab >>Turbulence Descriptors in Arterial Flows: Patient-Specific Computational Hemodynamics
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

At this very moment, there are literally millions of people who suffer from various types of cardiovascular diseases (CVDs), many of whom will experience reduced quality of life or premature lift expectancy. The detailed underlying pathogenic processes behind many of these disorders are not well understood, but were abnormal dynamics of the blood flow (hemodynamics) are believed to play an important role, especially atypical flow-mediated frictional forces on the intraluminal wall (i.e. the wall shear stress, WSS). Under normal physiological conditions, the flow is relatively stable and regular (smooth and laminar), which helps to maintain critical vascular functions. When these flows encounter various unfavorable anatomical obstructions, the flow can become highly unstable and irregular (turbulent), giving rise to abnormal fluctuating hemodynamic forces, which increase the bloodstream pressure losses, can damage the cells within the blood, as well as impair essential structural and functional regulatory mechanisms. Over a prolonged time, these disturbed flow conditions may promote severe pathological responses and are therefore essential to foresee as early as possible.

Clinical measurements of blood flow characteristics are often performed non-invasively by modalities such as ultrasound and magnetic resonance imaging (MRI). High-fidelity MRI techniques may be used to attain a general view of the overall large-scale flow features in the heart and larger vessels but cannot be used for estimating small-scale flow variations nor capture the WSS characteristics. Since the era of modern computers, fluid motion can now also be predicted by computational fluid dynamics (CFD)simulations, which can provide discrete mathematical approximations of the flow field with much higher details (resolution) and accuracy compared to other modalities. CFD simulations rely on the same fundamental principles as weather forecasts, the physical laws of fluid motion, and thus can not only be used to assess the current flow state but also to predict (foresee) important outcome scenarios in e.g. intervention planning. To enable blood flow simulations within certain cardiovascular segments, these CFD models are usually reconstructed from MRI-based anatomical and flow image-data. Today, patient-specific computational hemodynamics are essentially only performed within the research field, where much emphasis is dedicated towards understanding normal/abnormal blood flow physiology, developing better individual-based diagnostics/treatments, and evaluating the results reliability/generality in order to approach clinical applicability.

In this thesis, advanced CFD methods were adopted to simulate realistic patient-specific turbulent hemodynamics in constricted arteries reconstructed from MRI data. The main focus was to investigate novel, comprehensive ways to characterize these abnormal flow conditions, in the pursuit of better clinical decision-making tools; from more in-depth analyzes of various turbulence-related tensor characteristics to descriptors that evaluate the hemodynamics more globally in the domain. Results from the studies in this thesis suggest that these turbulence descriptors can be useful to: i) target cardiovascular sites prone to specific turbulence characteristics, both in the bulk flow and on the intraluminal wall, ii) provide a more extensive view of the general flow severity within malformed vascular regions, and iii) evaluated and potentially improve cardiovascular modeling strategies and MRI-measured turbulence data.

The benefit of these descriptors is that they all, in principle, can be measured by different MRI procedures, making them more accessible from a clinical perspective. Although the significance of these suggested flow-mediated phenotypes has not yet been evaluated clinically, this work opens many doors of opportunities for making more thorough and longitudinal patient-specific studies, including large cohorts of patients with various CVDs susceptible to turbulent-like conditions, as well as performing more in-depth CFD-MRI validation analyzes.

Abstract [sv]

Just nu finns det bokstavligen miljontals människor som lider av olika typer av hjärt- och kärlsjukdomar, av vilka många kommer att uppleva nedsatt livskvalitet samt förkortad livslängd. De underliggande patogena orsakerna bakom dessa åkommor är fortfarande inte väl förstådda, men där onormal blodflödesdynamik (hemodynamik) tros spela en viktig roll, särskilt oregelbundna friktionskrafter på kärlväggens insida (väggskjuvspänningen). Under normala fysiologiska förhållanden är blodflödet relativt stabilt och regelbundet (laminärt), vilket hjälper till att bibehålla kritiska kärlfunktioner. När dessa flöden stöter på olika ogynnsamma anatomiska hinder kan flödet bli mycket instabilt och oregelbundet (turbulent) och ge upphov till onormala fluktuerande flödeskrafter vilket resulterar i förhöjda tryckförluster i blodomloppet, försämring av väsentliga strukturella och funktionella regleringsmekanismer i kärlen, samt stundvis skador på diverse blodkroppar och ge upphov till blodproppar. Över en längre tidsperiod kan dessa abnormala flödesförhållanden främja allvarliga patologiska förändringar och är därför viktiga att kartlägga så tidigt som möjligt.

Kliniska mätningar av blodflödesdynamik utförs ofta icke-invasivt av modaliteter som ultraljud och magnetisk resonanstomografi (MRI). Avancerade MRI-tekniker kan användas för att återskapa en allmän bild av de storskaliga flödesstrukturerna i hjärtat och de större kärlen men är inte lämpad för att uppskatta småskaliga flödesvariationer samt väggskjuvspänningens karaktär i detalj. Sedan introduktionen av moderna datorer så kan numera flödesmönster även estimeras av strömningsimuleringar (beräkningsströmningsdynamik), en metod som på engelska kallas ”computational fluid dynamics” eller CFD, vilket ger en diskret matematisk approximation av flödesfältet med mycket högre spatiell och temporal detaljnivå (upplösning) och noggrannhet jämfört med andra modaliteter. CFD simuleringar vilar på samma grundläggande principer som väderprognoser, de fysiska lagarna som beskriver hur ett strömningsfält beter sig, och kan således inte bara användas för att bedöma det aktuella flödestillståndet utan också för att försöka förutsäga utfallsscenarier vid exempelvis olika kirurgiska interventioner. För att möjliggöra blodflödesimuleringar inom vissa kardiovaskulära segment så rekonstrueras vanligtvis CFD-modeller från MRI-baserade anatomisk- och flödsbilddata. Idag är patientspecifika blodflödesberäkningar i huvudsak en forskningsdiciplin, där mycket vikt läggs vid att förstå normal/onormal blodflödesfysiologi, utveckla bättre individbaserad diagnostik/behandlingar och utvärdera resultatets tillförlitlighet/generalitet för att närma sig klinisk tillämpbarhet.

I denna avhandling användes avancerade CFD simuleringar för att beräkna realistiska turbulenta flödesförhållanden i patientspecifika förträngda bloodkärlsmodeller återskapade från MRI mätningar. Huvudfokus var att undersöka nya, omfattande sätt att karakterisera dessa onormala blodflöden i strävan efter bättre kliniska beslutsverktyg, från mer fördjupade analyser av olika turbulensrelaterade tensoregenskaper till deskriptorer som utvärderar blodflödesdynamiken mer globalt i domänen. Resultat från studierna i denna avhandling antyder att dessa turbulensrelaterade deskriptorer kan vara användbara för att: i) karlägga kardiovaskulära regioner exponerad av olika turbulent karakteristik, både i friströmen samt på kärlväggen, ii) ge en mer omfattande bild av flödes abnormalitet inom missbildade kärlregioner, och iii) utvärdera och potentiellt förbättra kardiovaskulära modelleringsstrategier samt MRI mätningar av turbulens.

Fördelen med dessa flödesdeskriptorer är att de alla, principiellt, kan mätas med olika MRI-tekniker, vilket gör dem mer tillgängliga ur ett kliniskt perspektiv. Ä ven om värdet av dessa föreslagna analysmetoder ännu inte har utvärderats kliniskt, öppnar detta arbete många dörrar för möjligheter att göra mer grundliga och longitudinella patientspecifika studier, inklusive stora kohorter av patienter med olika kardiovaskulär sjukdomar som förorsakar liknande turbulenta flödesförhållanden, samt utför mer fördjupade CFD-MRI valideringsanalyser.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2021. p. 126
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2129
National Category
Fluid Mechanics and Acoustics
Identifiers
urn:nbn:se:liu:diva-175193 (URN)10.3384/diss.diva-175193 (DOI)9789179296865 (ISBN)
Public defence
2021-05-26, Online through Zoom (contact magnus.andersson@liu.se) and ACAS, A Building, Campus Valla, Linköping, 09:00 (Swedish)
Opponent
Supervisors
Funder
Swedish e‐Science Research CenterSwedish Research Council, VR 2018-05973
Note

Additional funding agency: Center for Industrial Information Technology, grant no. CENIIT 09.03

Available from: 2021-04-26 Created: 2021-04-26 Last updated: 2021-05-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Andersson, MagnusLantz, JonasEbbers, TinoKarlsson, Matts
By organisation
Applied Thermodynamics and Fluid MechanicsFaculty of Science & EngineeringDivision of Cardiovascular MedicineFaculty of Medicine and Health SciencesDepartment of Clinical Physiology in LinköpingCenter for Medical Image Science and Visualization (CMIV)
In the same journal
Journal of Biomechanics
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 2324 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf