liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Control-Oriented Compressor Model with Adiabatic Efficiency Extrapolation
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-1584-8165
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0001-8646-8998
2017 (English)In: SAE International Journal of Engines, ISSN 1946-3936, E-ISSN 1946-3944, Vol. 10, no 4Article in journal (Refereed) Published
Abstract [en]

Downsizing and turbocharging with single or multiple stages has been one of the main solutions to decrease fuel consumption and harmful exhaust emissions, while keeping a sufficient power output. An accurate and reliable control-oriented compressor model can be very helpful during the development phase, as well as for engine calibration, control design, diagnostic purposes or observer design. A complete compressor model consisting of mass flow and efficiency models is developed and motivated. The proposed model is not only able to represent accurately the normal region measured in a compressor map but also it is capable to extrapolate to low compressor speeds. Moreover, the efficiency extrapolation is studied by analyzing the known problem with heat transfer from the hot turbine side, which introduces errors in the measurements done in standard gas stands. Since the parameterization of the model is an important and necessary step in the modeling, a tailored parameterization approach is presented based on Total Least Squares. A standard compressor map is the only data required to parameterize the model. The parameterization is tested with a database of more than 230 compressor maps showing that it can deal well with different compressor sizes and characteristics. Also, general initialization values for the model parameters are provided using the complete database parameterization results. The results show that the model accuracy is good and in general achieves relative errors below one percent. A comparison of the model accuracy for compressor maps with and without heat transfer influence is carried out, showing a similar model accuracy for both cases but better when no heat transfer is present. Furthermore, it is shown that the model is capable to predict the efficiency characteristics at low speed of two compressor maps, measured with near adiabatic conditions.

Place, publisher, year, edition, pages
United States: S A E Inc. , 2017. Vol. 10, no 4
National Category
Control Engineering Vehicle and Aerospace Engineering
Identifiers
URN: urn:nbn:se:liu:diva-136799DOI: 10.4271/2017-01-1032OAI: oai:DiVA.org:liu-136799DiVA, id: diva2:1091178
Funder
EU, Horizon 2020, 634135Available from: 2017-04-26 Created: 2017-04-26 Last updated: 2025-02-14Bibliographically approved
In thesis
1. Modeling and Control of EGR on Marine Two-Stroke Diesel Engines
Open this publication in new window or tab >>Modeling and Control of EGR on Marine Two-Stroke Diesel Engines
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The international marine shipping industry is responsible for the transport of around 90% of the total world trade. Low-speed two-stroke diesel engines usually propel the largest trading ships. This engine type choice is mainly motivated by its high fuel efficiency and the capacity to burn cheap low-quality fuels. To reduce the marine freight impact on the environment, the International Maritime Organization (IMO) has introduced stricter limits on the engine pollutant emissions. One of these new restrictions, named Tier III, sets the maximum NOx emissions permitted. New emission reduction technologies have to be developed to fulfill the Tier III limits on two-stroke engines since adjusting the engine combustion alone is not sufficient. There are several promising technologies to achieve the required NOx reductions, Exhaust Gas Recirculation (EGR) is one of them.  For automotive applications, EGR is a mature technology, and many of the research findings can be used directly in marine applications. However, there are some differences in marine two-stroke engines, which require further development to apply and control EGR.

The number of available engines for testing EGR controllers on ships and test beds is low due to the recent introduction of EGR. Hence, engine simulation models are a good alternative for developing controllers, and many different engine loading scenarios can be simulated without the high costs of running real engine tests. The primary focus of this thesis is the development and validation of models for two-stroke marine engines with EGR. The modeling follows a Mean Value Engine Model (MVEM) approach, which has a low computational complexity and permits faster than real-time simulations suitable for controller testing. A parameterization process that deals with the low measurement data availability, compared to the available data on automotive engines, is also investigated and described. As a result, the proposed model is parameterized to two different two-stroke engines showing a good agreement with the measurements in both stationary and dynamic conditions.

Several engine components have been developed. One of these is a new analytic in-cylinder pressure model that captures the influence of the injection and exhaust valve timings without increasing the simulation time. A new compressor model that can extrapolate to low speeds and pressure ratios in a physically sound way is also described. This compressor model is a requirement to be able to simulate low engine loads. Moreover, a novel parameterization algorithm is shown to handle well the model nonlinearities and to obtain a good model agreement with a large number of tested compressor maps. Furthermore, the engine model is complemented with dynamic models for ship and propeller to be able to simulate transient sailing scenarios, where good EGR controller performance is crucial. The model is used to identify the low load area as the most challenging for the controller performance, due to the slower engine air path dynamics. Further low load simulations indicate that sensor bias can be problematic and lead to an undesired black smoke formation, while errors in the parameters of the controller flow estimators are not as critical. This result is valuable because for a newly built engine a proper sensor setup is more straightforward to verify than to get the right parameters for the flow estimators.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 200
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1904
Keywords
Modeling for control, Ship Propulsion, Dynamic Simulation, Exhaust Gas Recirculation, Mean Value Engine Model, Parameterization, Compressor, Model Extrapolation
National Category
Control Engineering Vehicle and Aerospace Engineering
Identifiers
urn:nbn:se:liu:diva-144596 (URN)10.3384/diss.diva-144596 (DOI)9789176853689 (ISBN)
Public defence
2018-03-23, Ada Lovelace, Ingång 27, B-huset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Funder
EU, Horizon 2020, 634135Vinnova, LINK-SIC
Available from: 2018-01-30 Created: 2018-01-30 Last updated: 2025-02-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Llamas, XavierEriksson, Lars

Search in DiVA

By author/editor
Llamas, XavierEriksson, Lars
By organisation
Vehicular SystemsFaculty of Science & Engineering
In the same journal
SAE International Journal of Engines
Control EngineeringVehicle and Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 584 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf