liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of optimal energy management in smart homes using MPC
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-0808-052X
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
2016 (English)In: , 2016, 2066-2071 p.Conference paper (Refereed)
Abstract [en]

Advanced building management systems utilize future information, such as electricity spot prices, weather forecasts, and predicted electric loads and hot water consumption, to reduce the maximum electric power consumption and energy cost. A model predictive controller (MPC) is implemented for a household with one hour sample intervals, including hot water usage, charging of an electric vehicle, and domestic heating, but also an accumulator water tank to be used as an additional thermal energy storage. Both the maximum total power used in the house and the energy cost are included in the cost function to evaluate how these properties are affected by different system designs. The MPC solution is compared to the global optimal solution using dynamic programming indicating comparable performance. The robustness of the MPC is evaluated using a prediction of the future household electric consumption in the controller. Results also show that a significant part of the cost reduction is achieved for as small prediction horizons as five hours. Analysis shows that including an accumulator tank is useful for reducing the total energy cost, while reducing the peak power is mainly achieved by increasing the prediction horizon of the MPC.

Place, publisher, year, edition, pages
2016. 2066-2071 p.
National Category
Vehicle Engineering Energy Systems
Identifiers
URN: urn:nbn:se:liu:diva-137769OAI: oai:DiVA.org:liu-137769DiVA: diva2:1101700
Conference
15th European Control Conference; Ålborg; Denmark
Available from: 2017-05-29 Created: 2017-05-29 Last updated: 2017-06-08Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Sundström, ChristoferJung, DanielBlom, Anders
By organisation
Vehicular SystemsFaculty of Science & Engineering
Vehicle EngineeringEnergy Systems

Search outside of DiVA

GoogleGoogle Scholar

Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf