liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Process- and optoelectronic-control of NiOx thin films deposited by reactive high power impulse magnetron sputtering
Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, Faculty of Science & Engineering. IRT, France; University of Nantes, France.
University of Nantes, France.
University of Nantes, France.
University of Nantes, France; Yachay Tech, Ecuador.
Show others and affiliations
2017 (English)In: Journal of Applied Physics, ISSN 0021-8979, E-ISSN 1089-7550, Vol. 121, no 17, 171916Article in journal (Refereed) Published
Abstract [en]

In this contribution, based on the analyses of the discharge behavior as well as final properties of the deposited Ni-O films during reactive high power impulse magnetron sputtering discharge, we have demonstrated that monitoring the oxygen flow rate leads to 4 different regimes of discharge. Tuning the oxygen partial pressure allows deposition of a large range of chemical compositions from pure nickel to nickel-deficient NiOx (xamp;gt; 1) in the poisoned mode. Investigation of the plasma dynamics by time-resolved optical emission spectroscopy suggests that the discharge behavior in the poisoned mode principally comes from the higher contribution of both oxygen and argon ions in the total ionic current, leading to a change in the ion induced secondary electron emission coefficient. Additionally, material characterizations have revealed that optoelectronic properties of NiOx films can be easily tuned by adjusting the O/Ni ratio, which is influenced by the change of the oxygen flow rate. Stoichiometric NiO films (O/Ni ratio similar to 1) are transparent in the visible range with a transmittance similar to 80% and insulating as expected with an electrical resistivity similar to 10 6 Omega cm. On the other hand, increasing the O/Niamp;gt; 1 leads to the deposition of more conductive coating (p similar to 10 Omega cm) films with a lower transmittance similar to 50%. These optoelectronic evolutions are accompanied by a band-gap narrowing 3.65 to 3.37 eV originating from the introduction of acceptor states between the Fermi level and the valence band maximum. In addition, our analysis has demonstrated that nickel vacancies are homogeneously distributed over the film thickness, explaining the p-type of the films. Published by AIP Publishing.

Place, publisher, year, edition, pages
AMER INST PHYSICS , 2017. Vol. 121, no 17, 171916
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:liu:diva-137837DOI: 10.1063/1.4978349ISI: 000400623700018OAI: oai:DiVA.org:liu-137837DiVA: diva2:1105171
Note

Funding Agencies|Institut de Recherche Technologique (IRT)

Available from: 2017-06-02 Created: 2017-06-02 Last updated: 2017-06-02

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Keraudy, Julien
By organisation
Plasma and Coating PhysicsFaculty of Science & Engineering
In the same journal
Journal of Applied Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 439 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf