liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Scaling of texture in training autoencoders for classification of histological images of colorectal cancer
Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. Linkoping University. (Medical Informatics)ORCID iD: 0000-0002-4255-5130
2017 (English)In: Advances in Neural Networks: 14th International Symposium on Neural Networks (ISNN 2017 / [ed] F. Cong et al., Springer, 2017, 524-532 p.Chapter in book (Refereed)
Place, publisher, year, edition, pages
Springer, 2017. 524-532 p.
Series
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 10261
National Category
Medical Image Processing
Identifiers
URN: urn:nbn:se:liu:diva-138052DOI: 10.1007/978-3-319-59081-3ISBN: 978-3-319-59080-6 (print)ISBN: 978-3-319-59081-3 (electronic)OAI: oai:DiVA.org:liu-138052DiVA: diva2:1106508
Available from: 2017-06-07 Created: 2017-06-07 Last updated: 2017-06-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www.springer.com/gp/book/9783319590806

Authority records BETA

Pham, Tuan

Search in DiVA

By author/editor
Pham, Tuan
By organisation
Division of Biomedical EngineeringFaculty of Science & Engineering
Medical Image Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf