liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental verification of design automation methods for robotic finger
Linköping University, Department of Management and Engineering. Linköping University, Faculty of Science & Engineering. ABB Corporate Research Centre, Sweden.
Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Machine Design. Linköping University, Faculty of Science & Engineering.
ABB Corporate Research Centre, Sweden.
2017 (English)In: Robotics and Autonomous Systems, ISSN 0921-8890, E-ISSN 1872-793X, Vol. 94, p. 89-101Article in journal (Refereed) Published
Abstract [en]

Design automation of industrial grippers is a hot research topic for robot industries. However, literature lacks a standard experimental method to enable researchers to validate their approaches. Thus, this paper proposes a generic experimental method to verify existing finger design approaches. The introduced method is utilized to validate the methods Generic Automated Finger Design (GAFD), Manually Designed Fingers (MDF) and the eGrip tool. Experimental results are compared and the strengths and weaknesses of each method are presented. (C) 2017 The Authors. Published by Elsevier B.V.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV , 2017. Vol. 94, p. 89-101
Keywords [en]
Grippers; Fingers; Design automation; Robotics; Experimental method
National Category
Robotics
Identifiers
URN: urn:nbn:se:liu:diva-139386DOI: 10.1016/j.robot.2017.04.011ISI: 000404201700009OAI: oai:DiVA.org:liu-139386DiVA, id: diva2:1129870
Note

Funding Agencies|European Communitys Framework Programme Horizon 2020 [644938 - SARAFun]

Available from: 2017-08-07 Created: 2017-08-07 Last updated: 2018-02-09
In thesis
1. Finger Design Automation for Industrial Robots: A Generic and Agile Approach
Open this publication in new window or tab >>Finger Design Automation for Industrial Robots: A Generic and Agile Approach
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

ROBOT fingers play a crucial role in the success and performance of workcells, as fingers are the only interfaces that connect the robot to the physical working environment. Fingers are responsible for grasping and manipulating workpieces without dropping or damaging them. Designing industrial robot fingers to accomplish assigned tasks is therefore tremendously complex and requires high skills in robotics and designing at the same time.

Today, there is a trend toward products with short lifecycles and, as a result, many robot industries have focused on enhancing the competitiveness of robotic automation in the agile market. SARAFun and Factory-in-a-day are two large European Commission projects which are formed to enable a non-expert user to integrate a robot system for an assembly task in one single day. Currently, fingers of industrial grippers (e.g. parallel- jaw) are designed manually, a process that requires several exhaustive and time- consuming trial and error iterations even for highly skilled specialists. The average iteration time is about three to four working days and the total time for designing fingers can amount to around two weeks depending on the complexity requirements.

The present iterative procedure of manual finger design is unable to fulfil the demands of ‘‘burst’’ production (i.e. ramp up to full volume in a very short time, run production for 3–12 months, and then change to produce a new product). Finger design automation has therefore been increasingly attracting the attention of the robot industry. However, very few researchers have studied finger design automation and unfortunately no one has validated the proposed approaches with a generic experimental method.

This research therefore proposes the generic optimized finger design (GOFD) framework in order to automate the design process of robotic fingers. The framework is optimized to reduce the design process time while maintaining high reliability and performance of the fingers. The functionality and general applicability of the framework is examined in various case studies and applications with a diverse range of workpieces. In order to be able to benchmark the functionality of robotic fingers, an experimental method is also developed to measure the stability and performance of the fingers in industrial practice. The proposed experimental method is employed to evaluate the functionality of the GOFD fingers and compare it with that of other fingers. Results are comprehensively analysed and the strengths and weaknesses of each method are highlighted. This thesis thus presents a design automation processes that automates the design procedure for robotic fingers, together with an experimental method to compare the performance of different finger designs. The introduced GOFD method can help robot industries comply with the trending agile market. Moreover, scholars who are inexpert in robotics may benefit from utilizing GOFD in their research to generate functional fingers.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 61
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1917
National Category
Robotics
Identifiers
urn:nbn:se:liu:diva-145081 (URN)9789176853436 (ISBN)
Public defence
2018-03-01, ACAS, A-huset, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Funder
EU, Horizon 2020, 644938 – SARAFun
Available from: 2018-02-09 Created: 2018-02-09 Last updated: 2019-01-21Bibliographically approved

Open Access in DiVA

fulltext(2076 kB)478 downloads
File information
File name FULLTEXT01.pdfFile size 2076 kBChecksum SHA-512
be1eb267583a2453608efa82cb7f5d2cdedba14889ebd277d0cab87eb4b401b481eca3b43b57083305e0c651edd7db28d4580015db7495a71008a3aa9d5f1e2c
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Honarpardaz, MohammadaliTarkian, MehdiÖlvander, Johan
By organisation
Department of Management and EngineeringFaculty of Science & EngineeringMachine Design
In the same journal
Robotics and Autonomous Systems
Robotics

Search outside of DiVA

GoogleGoogle Scholar
Total: 478 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 325 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf