liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Platform for Overall Monitoring and Diagnosis for Hybrid Vehicles
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
2010 (English)Report (Other academic)
Abstract [en]

Compared with conventional vehicles, designing hybrid electric vehicles includes new features, such as energy management and monitoring of the electrical components. To be able to investigate such issues a simulation platform of a hybrid vehicle, driver, and diagnosis system is developed based on the CAPSim model library. The simulation platform is component based, and is able to handle different powertrain configurations. In this investigation a parallel hybrid is modeled and parameterized to represent a long haulage truck. To be able to easily change a model of a component in the vehicle model, every model of a specific component use the same sets of input and output signals. The vehicle model is based on dynamic equations and in general simple models of the components, since the interplay of the components is of major interest in this investigation. Three model based diagnosis systems are developed and implemented in the platform with a twofolded purpose. The first purpose is to demonstrate the feasibility of the platform. The second purpose is to investigate issues when designing diagnosis systems on vehicle level of a hybrid vehicle powertrain. New features, for example mode switches in the system and a freedom in choosing operating points of the components via the energy management, affect the diagnosis system. The influence of these issues on the performance of the diagnosis system is investigated by design and implementation of three diagnosis systems on a vehicle level. The diagnosis systems are based on three sensor configurations. Two of these consist of several sensors and one system uses few sensors. In one of the systems using information from several sensors, the sensors are placed close to the components that are to be monitored, while the sensors in the other system is based on a different sensor configuration. All three diagnosis systems detect specific faults, here specifically faults in the electrical components in a hybrid vehicle powertrain, but the methodology is generic. It is shown that there is a connection between the design of the energy management and the three diagnosis systems, and that this interplay is of special relevance when models of components are valid only in some operating modes. The diagnosis system based on few sensors is more complex and includes a larger part of the vehicle model than the system based on several sensors placed close to the components to be monitored.

Place, publisher, year, edition, pages
Linköping: Department of Electrical Engineering , 2010. , p. 103
Series
LiTH-ISY-R, ISSN 1400-3902 ; 2925
Keywords [en]
Diagnosis
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:liu:diva-139742ISRN: LiTH-ISY-R-2925OAI: oai:DiVA.org:liu-139742DiVA, id: diva2:1131587
Available from: 2017-08-15 Created: 2017-08-15 Last updated: 2017-08-16Bibliographically approved

Open Access in DiVA

A Platform for Overall Monitoring and Diagnosis for Hybrid Vehicles(4006 kB)30 downloads
File information
File name FULLTEXT01.pdfFile size 4006 kBChecksum SHA-512
671e79e6a8aad638dcec883819cc95dd2ed9f63cd30907f9e65b4b90910d32df2090b481ac839d6e98fe59d109ed23611861c95bfe396b7370669920dcbaae44
Type fulltextMimetype application/pdf

Authority records BETA

Sundström, ChristoferFrisk, ErikNielsen, Lars

Search in DiVA

By author/editor
Sundström, ChristoferFrisk, ErikNielsen, Lars
By organisation
Vehicular SystemsFaculty of Science & Engineering
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 30 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf