liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Postoperative lead movement after deep brain stimulation surgery and changes of stimulation area
Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. (MINT)
Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. (MINT)
Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. (MINT)ORCID iD: 0000-0002-6896-1452
Linköping University, Department of Biomedical Engineering, Division of Biomedical Engineering. Linköping University, Faculty of Science & Engineering. (MINT)ORCID iD: 0000-0002-0012-7867
Show others and affiliations
2017 (English)Conference paper, Abstract (Other academic)
Abstract [en]

Introduction

Lead movement after deep brain stimulation (DBS) may occur and influence the area of stimulation. The cause of the displacement is not fully understood. The aim of the study was to investigate differences in lead position between the day after surgery and approximately one month postoperatively and also simulate the electric field (EF) around the active contacts.

Methods

23 patients with movement disorders underwent DBS surgery (37 leads). CT at the two time points were co-fused respectively with the stereotactic images in Surgiplan. The coordinates (x, y, z) of the lead tips were compared between the two dates (paired t-test). 8 of these patients were selected for the EF simulation in Comsol Multiphysics.

Results

There was a significant discrepancy (mean ± s.d.) on the left lead: x (0.44 ± 0.72, p < 0.01), y (0.64 ± 0.54, p < 0.001), z (0.62 ± 0.71, p < 0.001).  On the right lead, corresponding values were: x (-0.11 ± 0.61, n.s.), y (0.71 ± 0.54, p < 0.001), z (0.49 ± 0.81, p < 0.05).  No correlation was found between bilateral (n =14) vs. unilateral DBS, gender (n = 17 male) and age < 60 years (n = 8).  The lead movement affected the EF spread (Fig. 1).

Conclusion

The left lead tip displayed a tendency to move lateral, anterior and inferior and the right a tendency to move anterior and inferior. Lead movement after DBS can be a factor to consider before starting the stimulation. The differences in the area of stimulation might affect clinical outcome.

Place, publisher, year, edition, pages
S. Karger, 2017.
Series
Stereotactic and Functional Neurosurgery, ISSN 1011-6125, E-ISSN 1423-0372
National Category
Medical Engineering
Identifiers
URN: urn:nbn:se:liu:diva-139886DOI: 10.1159/000478281OAI: oai:DiVA.org:liu-139886DiVA: diva2:1134643
Conference
World Society for Stereotactic and Functional Neurosurgery, 17th Quadrennial meeting, Berlin June 26-29, 2017
Available from: 2017-08-21 Created: 2017-08-21 Last updated: 2017-09-04

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Göransson, NathanaelJohansson, JohannesAlonso, FabiolaWårdell, KarinZsigmond, Peter
By organisation
Division of Biomedical EngineeringFaculty of Science & EngineeringDivision of Neuro and Inflammation ScienceFaculty of Medicine and Health SciencesDepartment of Neurosurgery
Medical Engineering

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf