liu.seSearch for publications in DiVA

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The effect of uncertain geometries on advection–diffusion of scalar quantitiesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2018 (English)In: BIT Numerical Mathematics, ISSN 0006-3835, E-ISSN 1572-9125, Vol. 58, no 2, p. 509-529Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Springer, 2018. Vol. 58, no 2, p. 509-529
##### Keywords [en]

Incompressible flow, Advection–diffusion, Uncertainty quantification, Uncertain geometry, Boundary conditions, Parabolic problems, Variable coefficient, Temperature field, Heat transfer
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:liu:diva-140135DOI: 10.1007/s10543-017-0676-7ISI: 000432718100012OAI: oai:DiVA.org:liu-140135DiVA, id: diva2:1137413
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt435",{id:"formSmash:j_idt435",widgetVar:"widget_formSmash_j_idt435",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt442",{id:"formSmash:j_idt442",widgetVar:"widget_formSmash_j_idt442",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt448",{id:"formSmash:j_idt448",widgetVar:"widget_formSmash_j_idt448",multiple:true});
##### Note

##### In thesis

The two dimensional advection–diffusion equation in a stochastically varyinggeometry is considered. The varying domain is transformed into a fixed one andthe numerical solution is computed using a high-order finite difference formulationon summation-by-parts form with weakly imposed boundary conditions. Statistics ofthe solution are computed non-intrusively using quadrature rules given by the probabilitydensity function of the random variable. As a quality control, we prove that thecontinuous problem is strongly well-posed, that the semi-discrete problem is stronglystable and verify the accuracy of the scheme. The technique is applied to a heat transferproblem in incompressible flow. Statistical properties such as confidence intervals andvariance of the solution in terms of two functionals are computed and discussed. Weshow that there is a decreasing sensitivity to geometric uncertainty as we graduallylower the frequency and amplitude of the randomness. The results are less sensitiveto variations in the correlation length of the geometry.

Funding agencies: European Union [ACP3-GA-2013-605036]

Available from: 2017-08-31 Created: 2017-08-31 Last updated: 2018-06-041. Uncertainty quantification for wave propagation and flow problems with random data$(function(){PrimeFaces.cw("OverlayPanel","overlay1196053",{id:"formSmash:j_idt774:0:j_idt778",widgetVar:"overlay1196053",target:"formSmash:j_idt774:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1214",{id:"formSmash:j_idt1214",widgetVar:"widget_formSmash_j_idt1214",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1267",{id:"formSmash:lower:j_idt1267",widgetVar:"widget_formSmash_lower_j_idt1267",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1268_j_idt1270",{id:"formSmash:lower:j_idt1268:j_idt1270",widgetVar:"widget_formSmash_lower_j_idt1268_j_idt1270",target:"formSmash:lower:j_idt1268:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});