liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
One-dimensional families of Riemann surfaces of genus g with 4g+4automorphims
Departamento de Matematicas Fundamentales, UNED.
Linköping University, Department of Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-9557-9566
2017 (English)In: RACSAM, ISSN 1578-7303Article in journal (Refereed) Epub ahead of print
Abstract [en]

We prove that themaximal number ag+b of automorphisms of equisymmetric and

complex-uniparametric families of Riemann surfaces appearing in all genera is 4g + 4. For

each integer g ≥ 2 we find an equisymmetric complex-uniparametric family Ag of Riemann

surfaces of genus g having automorphism group of order 4g + 4. For g ≡ −1mod 4 we

present another uniparametric family Kg with automorphism group of order 4g + 4. The

family Ag contains the Accola–Maclachlan surface and the family Kg contains the Kulkarni

surface

Place, publisher, year, edition, pages
Springer Berlin/Heidelberg, 2017.
Keyword [en]
Riemann surface, Automorphism group, Fuchsian group
National Category
Mathematics
Identifiers
URN: urn:nbn:se:liu:diva-140428DOI: 10.1007/s13398-017-0429-0OAI: oai:DiVA.org:liu-140428DiVA: diva2:1138254
Available from: 2017-09-04 Created: 2017-09-04 Last updated: 2017-09-19Bibliographically approved

Open Access in DiVA

fulltext(315 kB)9 downloads
File information
File name FULLTEXT02.pdfFile size 315 kBChecksum SHA-512
af3894aae933399906352d648dcc5ee6e93aa3f62aa043d66185883712826d87a9ac2a4373325d75504a6353f5d3148f20f6acf5968227028e6187d581e80f5c
Type fulltextMimetype application/pdf

Other links

Publisher's full textFull text (view only)

Search in DiVA

By author/editor
Izquierdo, Milagros
By organisation
Department of MathematicsFaculty of Science & Engineering
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 9 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 85 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf