liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Unifying Model for the Operation of Light-Emitting Electrochemical Cells
Eindhoven University of Technology, Netherlands.
Umeå University, Sweden.
Eindhoven University of Technology, Netherlands.
Eindhoven University of Technology, Netherlands.
Show others and affiliations
2010 (English)In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 132, no 39, p. 13776-13781Article in journal (Refereed) Published
Abstract [en]

The application of doping in semiconductors plays a major role in the high performances achieved to date in inorganic devices. In contrast, doping has yet to make such an impact in organic electronics. One organic device that does make extensive use of doping is the light-emitting electrochemical cell (LEC), where the presence of mobile ions enables dynamic doping, which enhances carrier injection and facilitates relatively large current densities. The mechanism and effects of doping in LECs are, however, still far from being fully understood, as evidenced by the existence of two competing models that seem physically distinct: the electrochemical doping model and the electrodynamic model. Both models are supported by experimental data and numerical modeling. Here, we show that these models are essentially limits of one master model, separated by different rates of carrier injection. For ohmic nonlimited injection, a dynamic p-n junction is formed, which is absent in injection-limited devices. This unification is demonstrated by both numerical calculations and measured surface potentials as well as light emission and doping profiles in operational devices. An analytical analysis yields an upper limit for the ratio of drift and diffusion currents, having major consequences on the maximum current density through this type of device.

Place, publisher, year, edition, pages
American Chemical Society , 2010. Vol. 132, no 39, p. 13776-13781
National Category
Other Physics Topics
Identifiers
URN: urn:nbn:se:liu:diva-141472DOI: 10.1021/ja1045555ISI: 000282864100048PubMedID: 20831189OAI: oai:DiVA.org:liu-141472DiVA, id: diva2:1145715
Note

Funding Agencies|Swedish Research Council; Wenner-Gren stiftelserna; Knut and Alice Wallenberg Foundation

Available from: 2017-09-29 Created: 2017-09-29 Last updated: 2017-10-06

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Kemerink, Martijn
In the same journal
Journal of the American Chemical Society
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 80 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf