liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Polar Switching in Trialkylbenzene-1,3,5-tricarboxamides
Eindhoven University of Technology, Netherlands.
Eindhoven University of Technology, Netherlands.
Eindhoven University of Technology, Netherlands.
Katholieke University of Leuven, Belgium.
Show others and affiliations
2012 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 116, no 13, p. 3928-3937Article in journal (Refereed) Published
Abstract [en]

The hydrogen-bonded hexagonal columnar LC (Col(hd)) phases formed by benzene-1,3,5-tricarboxamide (BTA) derivatives can be aligned uniformly by an electric field and display switching behavior with a high remnant polarization. The polar switching in three symmetrically substituted BTAs with alkyl chains varying in length between 6 and 18 carbon atoms (C6, C10, and C18) was investigated by electro-optical switching experiments, dielectric relaxation spectroscopy (DRS), and solid-state NMR The goal was to characterize ferroelectric properties of BTA-based columnar LCs, which display a macroscopic axial dipole moment due to the head-to-tail stacking of hydrogen-bonded amides. The Col(hd) phase of all three BTAs can be aligned uniformly by a dc field similar to 30 V/mu m. Moreover, C10 and C18 display extrinsic polar switching characterized by a remnant polarization and coercive field of 1-2 mu C/cm(2) and 20-30 V/mu m, respectively. In the absence of an external field, the polarization is lost in 1-1000 s, depending on device details and temperature. DRS revealed a columnar glass transition in the low-temperature region of the LC phase related to collective vibrations in the hydrogen-bonded columns that freeze out below 41-54 degrees C. At higher temperatures, a relaxation process is present originating from the collective reorientation of amide groups along the column axis (inversion of the macrodipole). Matching activation energies suggest that the molecular mechanism underlying the polar switching and the R-processes is identical. These results illustrate that LC phases based on BTAs offer the unique possibility to integrate polarization with other functionalities in a single nanostructured material.

Place, publisher, year, edition, pages
American Chemical Society , 2012. Vol. 116, no 13, p. 3928-3937
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-141448DOI: 10.1021/jp300008fISI: 000302337000003PubMedID: 22397532OAI: oai:DiVA.org:liu-141448DiVA, id: diva2:1145803
Note

Funding Agencies|Netherlands Organization for Scientific Research, Chemical Sciences (NWO-CW)

Available from: 2017-09-29 Created: 2017-09-29 Last updated: 2017-10-09

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Kemerink, Martijn
In the same journal
Journal of Physical Chemistry B
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 121 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf