liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Lean improvements in remanufacturing: solving information flow challenges
Linköping University, Department of Management and Engineering, Manufacturing Engineering. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Management and Engineering, Manufacturing Engineering. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-2552-3636
Linköping University, Department of Management and Engineering, Logistics & Quality Management. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-4040-8302
2017 (English)In: QMOD proceedings, 2017Conference paper, Published paper (Refereed)
Abstract [en]

Purpose - One efficient way to prolong the functional life of used products is remanufacturing. Compared to manufacturing, remanufacturing is a complex industrial process due to among other things high product variability, low production volumes and uncertain quality of returned used products. Remanufacturers are dependent on product information from Original Equipment Manufacturers (OEM), but that information is often not shared. Remanufacturers struggle to access or develop lacking product information and need a strategy to address information flow challenges. Lean could be a suitable strategy to improve the information flow. Therefore, the purpose of the paper is to identify and suggest Lean improvements to address remanufacturer’s information flow challenges.

Methodology/Approach - Based on a case study of a filling machine remanufacturer, this paper discusses the information flow challenges and Lean-based solutions. The data was collected through a three-hour focus group interview combined with a Value Stream Mapping (VSM) method with the participation of seven company employees representing sales, logistics, quality, maintenance and production departments.

Findings - Two key information flow challenges were identified at the company: a lack of available product data and miscommunication with the OEM, and poor internal information sharing. The analysis of the identified challenges and improvement ideas created a platform for developing Lean-based solutions:1) developing standard operations through instruction checklists and kitting areas;2) boosting supplier and customer relations through six best partnering practices; and3) developing people and teams through teamwork and training.

Originality/Value of paper – All industries have their own specific challenges and development needs. This paper focuses on information flow challenges in remanufacturing. Original product information is often not shared, even when the remanufacturer has a contract with the OEM. Only few remanufacturers work with Lean today, but Lean could be a strategy to address the information flow challenges. This paper contributes to the knowledge on how Lean could be applied in the remanufacturing context.

Place, publisher, year, edition, pages
2017.
Keywords [en]
Lean remanufacturing, Information flow, Challenges, Improvements
National Category
Production Engineering, Human Work Science and Ergonomics
Identifiers
URN: urn:nbn:se:liu:diva-142344OAI: oai:DiVA.org:liu-142344DiVA, id: diva2:1153029
Conference
20th QMOD conference, Copenhagen/Elsinore, Denmark and Helsingborg, Sweden, 5-7 August, 2017
Available from: 2017-10-27 Created: 2017-10-27 Last updated: 2018-05-17Bibliographically approved
In thesis
1. Lean Remanufacturing: Reducing Process Lead Time
Open this publication in new window or tab >>Lean Remanufacturing: Reducing Process Lead Time
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Remanufacturing is a product recovery option in which used products are brought back into useful life. While the remanufacturing industry stretches from heavy machinery to automotive parts, furniture, and IT sectors, it faces challenges. A majority of these challenges originate from the remanufacturing characteristics of having little control over the core (the used product or its part), high product variation, low product volumes, and a high proportion of manual work, when compared to manufacturing. Some remanufacturing challenges appear to be process challenges that prolong process lead time, making remanufacturing process inefficient.

Lean is an improvement strategy with roots in the manufacturing industry. Lean helps to increase customer satisfaction, reduce costs, and improve company’s performance in delivery, quality, inventory, morale, safety, and other areas. Lean encompasses principles, tools and practices to deal with e.g. inefficient processes and long process lead times. Therefore, in this thesis lean has been selected as an improvement strategy to deal with long remanufacturing process lead times.

The objective of this thesis is to expand knowledge on how lean can reduce remanufacturing process lead time. This objective is approached through literature studies and a case study conducted at four remanufacturing companies. There are five challenges that contribute to long process lead time: unpredictable core quality, quantity, and timing; weak collaboration, information exchange, and miscommunication; high inventory levels; unknown number of required operations in process and process sequence; and insufficient employee skills for process and product upgrade. When analysing the case companies’ process lead times it was found that there is a need to reduce waiting times, which account for 95 to 99 per cent of process lead times at three of the four companies.

To improve remanufacturing process efficiency and reduce remanufacturing process lead time six lean practices are suggested: product families; kanban; layout for continuous flow; cross functional teams; standard operating procedures; and supplier partnerships. The suggested lean practices have a key focus on reducing waiting time since it prolongs the process lead time. This thesis contributes to lean remanufacturing research with the case study findings on lean practices to reduce remanufacturing process lead time and increase process efficiency.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. p. 70
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1938
Keywords
Circular Economy, Lean Production, Toyota Production System, Value Stream Mapping, Remanufacturing Process Challenges and Improvements, Process Efficiency
National Category
Production Engineering, Human Work Science and Ergonomics Reliability and Maintenance
Identifiers
urn:nbn:se:liu:diva-147875 (URN)10.3384/diss.diva-147875 (DOI)9789176853030 (ISBN)
Public defence
2018-06-14, ACAS, A building, Campus Valla, Linköping, 09:15 (Swedish)
Opponent
Supervisors
Available from: 2018-05-17 Created: 2018-05-17 Last updated: 2018-05-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records BETA

Kurilova-Palisaitiene, JelenaSundin, ErikPoksińska, Bonnie

Search in DiVA

By author/editor
Kurilova-Palisaitiene, JelenaSundin, ErikPoksińska, Bonnie
By organisation
Manufacturing EngineeringFaculty of Science & EngineeringLogistics & Quality Management
Production Engineering, Human Work Science and Ergonomics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 120 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf