Thermal barrier coatings (TBCs) are used in gas turbines to reduce creep, thermo-mechanical fatigue, and oxidation, or to allow for reduced air cooling. TBCs may fail due to fatigue. Structural optimization methods were applied to optimize the. TBC thickness in such a way as to increase the life of the TBC. The TBC thickness was varied for three cases: 1) minimizing TBC volume, 2) minimizing TBC maximum effective stress, and 3) minimizing compliance (minimizing the strain energy). The results from the optimization were used to estimate the relative change in TBC life via a strain energy based failure criterion and a Coffin-Manson-like expression. Minimization of volume had limited use due to limitations in the current implementation. Minimization of effective stress did not give any significant increase in life. The minimization of compliance increased the estimated TBC life at highly stressed regions.