liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The trade-off between electrochromic stability and contrast of a thiophene-Quinoxaline copolymer
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Surface Physics and Chemistry. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, Faculty of Science & Engineering.
Show others and affiliations
2017 (English)In: Electrochimica Acta, ISSN 0013-4686, E-ISSN 1873-3859, Vol. 253, p. 530-535Article in journal (Refereed) Published
Abstract [en]

The stability of organic electrochromic devices is a crucial issue for their applications. However, until now the degradation mechanism of electrochromic materials are still not fully understood especially for electrochromic conjugated polymers (ECPs). To improve device stability, intensive investigation on the degradation mechanism of ECPs is urgently needed. Here we report our study on the electrochromic degradation in a thiophene-quinoxaline copolymer: poly [2,3-bis-(3-octyloxyphenyl) quinoxaline-5,8diyl- alt-thiophene-2,5-diyl] (TQ1). The results of X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectra (UPS) and UV-vis transmission spectra reveal that there are three main factors during the electrochromic degradation of TQ1. The first one is anion (ClO4-) irreversibly deep trapped, while the second is peroxidation of the thiophene group in TQ1. Both factors reduce the conductivity and electrochromism of TQ1. The third is structural relaxation resulting lager conjugated system of TQ1 molecules in film, which is gradually developed during 400 cycling of CV at a narrow potential range (01 V). When a potential range 0-0.7 V is applied, all three factors are prohibited, no electrochromism degradation is observed anymore, although the contrast becomes smaller. Our investigation systematically discloses the degradation mechanism during the electrochemistry processing of a ECP (TQ1), demonstrating the significance of trade-off between the electrochromic stability and contrast of the ECP. (C) 2017 Elsevier Ltd. All rights reserved.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD , 2017. Vol. 253, p. 530-535
Keywords [en]
Electrochemistry; Electrochromic; Degradation; Stability; Thiophene-quinoxaline copolymer
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-142419DOI: 10.1016/j.electacta.2017.09.068ISI: 000413011100059OAI: oai:DiVA.org:liu-142419DiVA, id: diva2:1153699
Note

Funding Agencies|Swedish Research Council [VR 621-2013-5561]; VINNMER Marie Curie Incoming from VINNOVA [2016-02840]

Available from: 2017-10-31 Created: 2017-10-31 Last updated: 2017-10-31

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Xing, XingWang, Chuan FeiLiu, XianjieLeiqiang, QinZhang, Fengling
By organisation
Biomolecular and Organic ElectronicsFaculty of Science & EngineeringSurface Physics and Chemistry
In the same journal
Electrochimica Acta
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 162 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf