liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sound wave propagation on the human skull surface with bone conduction stimulation
University Hospital Zurich, Switzerland; University of Zurich, Switzerland.
University Hospital Zurich, Switzerland; University of Zurich, Switzerland.
Linköping University, Department of Clinical and Experimental Medicine, Division of Speech language pathology, Audiology and Otorhinolaryngology. Linköping University, Faculty of Medicine and Health Sciences.ORCID iD: 0000-0003-3350-8997
University of Stuttgart, Germany.
Show others and affiliations
2017 (English)In: Hearing Research, ISSN 0378-5955, E-ISSN 1878-5891, Vol. 355Article in journal (Refereed) Published
Abstract [en]

Background: Bone conduction (BC) is an alternative to air conduction to stimulate the inner ear. In general, the stimulation for BC occurs on a specific location directly on the skull bone or through the skin covering the skull bone. The stimulation propagates to the ipsilateral and contralateral cochlea, mainly via the skull bone and possibly via other skull contents. This study aims to investigate the wave propagation on the surface of the skull bone during BC stimulation at the forehead and at ipsilateral mastoid. Methods: Measurements were performed in five human cadaveric whole heads. The electro-magnetic transducer from a BCHA (bone conducting hearing aid), a Baha (R) Cordelle II transducer in particular, was attached to a percutaneously implanted screw or positioned with a 5-Newton steel headband at the mastoid and forehead. The Baha transducer was driven directly with single tone signals in the frequency range of 0.25-8 kHz, while skull bone vibrations were measured at multiple points on the skull using a scanning laser Doppler vibrometer (SLDV) system and a 3D LDV system. The 3D velocity components, defined by the 3D LDV measurement coordinate system, have been transformed into tangent (in-plane) and normal (out-of-plane) components in a local intrinsic coordinate system at each measurement point, which is based on the cadaver heads shape, estimated by the spatial locations of all measurement points. Results: Rigid-body-like motion was dominant at low frequencies below 1 kHz, and clear transverse traveling waves were observed at high frequencies above 2 kHz for both measurement systems. The surface waves propagation speeds were approximately 450 m/s at 8 kHz, corresponding trans-cranial time interval of 0.4 ms. The 3D velocity measurements confirmed the complex space and frequency dependent response of the cadaver heads indicated by the ID data from the SLDV system. Comparison between the tangent and normal motion components, extracted by transforming the 3D velocity components into a local coordinate system, indicates that the normal component, with spatially varying phase, is dominant above 2 kHz, consistent with local bending vibration modes and traveling surface waves. Conclusion: Both SLDV and 3D LDV data indicate that sound transmission in the skull bone causes rigid body-like motion at low frequencies whereas transverse deformations and travelling waves were observed above 2 kHz, with propagation speeds of approximately of 450 m/s at 8 kHz. (C) 2017 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE BV , 2017. Vol. 355
Keyword [en]
Bone conduction; 3D laser Doppler vibrometry; Wave propagation; Rigid body motion; Transverse deformation; Full-field measurements; Human cadaver head
National Category
Otorhinolaryngology
Identifiers
URN: urn:nbn:se:liu:diva-143363DOI: 10.1016/j.heares.2017.07.005ISI: 000415775600001PubMedID: 28964568OAI: oai:DiVA.org:liu-143363DiVA: diva2:1162794
Available from: 2017-12-05 Created: 2017-12-05 Last updated: 2017-12-05

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Stenfelt, Stefan
By organisation
Division of Speech language pathology, Audiology and OtorhinolaryngologyFaculty of Medicine and Health Sciences
In the same journal
Hearing Research
Otorhinolaryngology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 71 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf