liu.seSearch for publications in DiVA
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterization of Cardiac Flow in Heart Disease Patients by CFD and 4D Flow MRI
Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).ORCID iD: 0000-0003-1942-7699
Linköping University, Department of Medical and Health Sciences, Division of Cardiovascular Medicine. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).
Linköping University, Department of Medical and Health Sciences, Division of Radiological Sciences. Linköping University, Faculty of Medicine and Health Sciences. Linköping University, Center for Medical Image Science and Visualization (CMIV).ORCID iD: 0000-0001-5485-6769
Linköping University, Department of Management and Engineering, Applied Thermodynamics and Fluid Mechanics. Linköping University, Faculty of Science & Engineering. Linköping University, Center for Medical Image Science and Visualization (CMIV).ORCID iD: 0000-0001-5526-2399
Show others and affiliations
2017 (English)In: Bulletin of the Amerian Physcial Society, American Physical Society, 2017Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

In this study, cardiac blood flow was simulated using Computational Fluid Dynamics and compared to in vivo flow measurements by 4D Flow MRI. In total, nine patients with various heart diseases were studied. Geometry and heart wall motion for the simulations were obtained from clinical CT measurements, with 0.3x0.3x0.3 mm spatial resolution and 20 time frames covering one heartbeat. The CFD simulations included pulmonary veins, left atrium and ventricle, mitral and aortic valve, and ascending aorta. Mesh sizes were on the order of 6-16 million cells, depending on the size of the heart, in order to resolve both papillary muscles and trabeculae. The computed flow field agreed visually very well with 4D Flow MRI, with characteristic vortices and flow structures seen in both techniques. Regression analysis showed that peak flow rate as well as stroke volume had an excellent agreement for the two techniques. We demonstrated the feasibility, and more importantly, fidelity of cardiac flow simulations by comparing CFD results to in vivo measurements. Both qualitative and quantitative results agreed well with the 4D Flow MRI measurements. Also, the developed simulation methodology enables “what if” scenarios, such as optimization of valve replacement and other surgical procedures.

Place, publisher, year, edition, pages
American Physical Society, 2017.
National Category
Fluid Mechanics and Acoustics Medical Image Processing
Identifiers
URN: urn:nbn:se:liu:diva-143425OAI: oai:DiVA.org:liu-143425DiVA, id: diva2:1163439
Conference
70th Annual Meeting of the American Physical Society Division of Fluid Dynamics, November 19-21 2017, Denver, Colorado
Funder
Knut and Alice Wallenberg FoundationAvailable from: 2017-12-07 Created: 2017-12-07 Last updated: 2021-10-13

Open Access in DiVA

No full text in DiVA

Other links

Länk till abstract

Search in DiVA

By author/editor
Lantz, JonasGupta, VikasHenriksson, LilianKarlsson, MattsPersson, AndersCarlhäll, CarljohanEbbers, Tino
By organisation
Division of Cardiovascular MedicineFaculty of Medicine and Health SciencesCenter for Medical Image Science and Visualization (CMIV)Division of Radiological SciencesApplied Thermodynamics and Fluid MechanicsFaculty of Science & EngineeringDepartment of Radiology in LinköpingDepartment of Clinical Physiology in Linköping
Fluid Mechanics and AcousticsMedical Image Processing

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 270 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf