Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signalingShow others and affiliations
2015 (English)In: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 348, no 6240, p. 1264-1267Article in journal (Refereed) Published
Abstract [en]
Cell division progresses to anaphase only after all chromosomes are connected to spindle microtubules through kinetochores and the spindle assembly checkpoint (SAC) is satisfied. We show that the amino-terminal localization module of the SAC protein kinase MPS1 (monopolar spindle 1) directly interacts with the HEC1 (highly expressed in cancer 1) calponin homology domain in the NDC80 (nuclear division cycle 80) kinetochore complex in vitro, in a phosphorylation-dependent manner. Microtubule polymers disrupted this interaction. In cells, MPS1 binding to kinetochores or to ectopic NDC80 complexes was prevented by end-on microtubule attachment, independent of known kinetochore protein-removal mechanisms. Competition for kinetochore binding between SAC proteins and microtubules provides a direct and perhaps evolutionarily conserved way to detect a properly organized spindle ready for cell division.
Place, publisher, year, edition, pages
Washington, DC, United States: American Association for the Advancement of Science (A A A S) , 2015. Vol. 348, no 6240, p. 1264-1267
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:liu:diva-143660DOI: 10.1126/science.aaa4055ISI: 000356011500057PubMedID: 26068855Scopus ID: 2-s2.0-84931034097OAI: oai:DiVA.org:liu-143660DiVA, id: diva2:1165095
2017-12-122017-12-122017-12-19Bibliographically approved