liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Thermoelectric Polymer Aerogels for Pressure-Temperature Sensing Applications
Linköping University, Department of Science and Technology. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-2904-7238
Show others and affiliations
2017 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028, Vol. 27, no 44, article id 1703549Article in journal (Refereed) Published
Abstract [en]

The evolution of the society is characterized by an increasing flow of information from things to the internet. Sensors have become the cornerstone of the internet-of-everything as they track various parameters in the society and send them to the cloud for analysis, forecast, or learning. With the many parameters to sense, sensors are becoming complex and difficult to manufacture. To reduce the complexity of manufacturing, one can instead create advanced functional materials that react to multiple stimuli. To this end, conducting polymer aerogels are promising materials as they combine elasticity and sensitivity to pressure and temperature. However, the challenge is to read independently pressure and temperature output signals without cross-talk. Here, a strategy to fully decouple temperature and pressure reading in a dual-parameter sensor based on thermoelectric polymer aerogels is demonstrated. It is found that aerogels made of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) can display properties of semiconductors lying at the transition between insulator and semimetal upon exposure to high boiling point polar solvents, such as dimethylsulfoxide (DMSO). Importantly, because of the temperature-independent charge transport observed for DMSO-treated PEDOT-based aerogel, a decoupled pressure and temperature sensing can be achieved without cross-talk in the dual-parameter sensor devices.

Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH , 2017. Vol. 27, no 44, article id 1703549
Keyword [en]
aerogels; nanofibrillated cellulose; PEDOT; sensors; thermoelectrics
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:liu:diva-143632DOI: 10.1002/adfm.201703549ISI: 000416035400010OAI: oai:DiVA.org:liu-143632DiVA: diva2:1165568
Note

Funding Agencies|European Research Council (ERC) [307596]

Available from: 2017-12-13 Created: 2017-12-13 Last updated: 2018-02-15

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Han, ShaoboJiao, FeiUllah Khan, ZiaEdberg, JesperFabiano, SimoneCrispin, Xavier
By organisation
Department of Science and TechnologyFaculty of Science & EngineeringPhysics and Electronics
In the same journal
Advanced Functional Materials
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 91 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf