liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Processable enzyme-hybrid conductive polymer composites for electrochemical biosensing
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering. Sichuan Agriculture University, Peoples R China.
Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-1815-9699
Sichuan Agriculture University, Peoples R China.
Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-3274-6029
2018 (English)In: Biosensors & bioelectronics, ISSN 0956-5663, E-ISSN 1873-4235, Vol. 100, p. 374-381Article in journal (Refereed) Published
Abstract [en]

A new approach for the facile fabrication of electrochemical biosensors using a biohybrid conducting polymer was demonstrated using glucose oxidase (GOx) and poly (3, 4-ethylenedioxythiophene) (PEDOT) as a model. The biohybrid conducting polymer was prepared based on a template-assisted chemical polymerisation leading to the formation of PEDOT microspheres (PEDOT-MSs), followed by in-situ deposition of platinum nanoparticles (PtNPs) and electrostatic immobilisation of glucose oxidase (GOx) to form water processable GOx-PtNPs-PEDOT-MSs. The morphology, chemical composition and electrochemical performance of the GOx-PtNPs-PEDOT-MS-based glucose biosensor were characterised using scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Fourier transform infrared (FTIR) spectroscopy, zeta potential and electrochemical measurements, respectively. The biosensor delivered a linear response for glucose over the range 0.1-10 mM (R-2 = 0.9855) with a sensitivity of 116.25 mu A mM(-1) cm(-2), and limit of detection of 1.55 mu M (3 x SD/sensitivity). The sensitivity of the developed PEDOT-MS based biosensor is significantly higher (2.7 times) than the best reported PEDOT-based glucose biosensor in the literature. The apparent Michaelis Menten constant (K-m(app)) of the GOx-PtNPs-PEDOT-MS-based biosensors was calculated as 7.3 mM. Moreover, the biosensor exhibited good storage stability, retaining 97% of its sensitivity after 12 days storage. This new bio-hybrid conducting polymer combines the advantages of micro-structured morphology, compatibility with large-scale manufacturing processes, and intrinsic biocatalytic activity and conductivity, thus demonstrating its potential as a convenient material for printed bioelectronics and sensors.

Place, publisher, year, edition, pages
ELSEVIER ADVANCED TECHNOLOGY , 2018. Vol. 100, p. 374-381
Keywords [en]
Bio-conductive composite; PEDOT; Microspheres; Bio-interfaces; Glucose biosensor
National Category
Analytical Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-143600DOI: 10.1016/j.bios.2017.09.021ISI: 000416187600048PubMedID: 28946109OAI: oai:DiVA.org:liu-143600DiVA, id: diva2:1165658
Note

Funding Agencies|Swedish Research Council [VR-2015-04434]; China Scholarship Council (CSC) [201406910068]

Available from: 2017-12-13 Created: 2017-12-13 Last updated: 2017-12-13

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Liu, YuTurner, AnthonyMak, Wing Cheung
By organisation
ChemistryFaculty of Science & EngineeringSensor and Actuator Systems
In the same journal
Biosensors & bioelectronics
Analytical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf