liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rapid System Identification for Jump Markov Non-Linear Systems
Federal University of Ceara, Quixada, Brazil.
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.
Aeronautics Institute of Technology, Sao Jose dos Campos, Brazil.
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-3270-171X
2017 (English)In: Proc. 2017 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), IEEE, 2017, p. 714-718Conference paper, Published paper (Refereed)
Abstract [en]

This work evaluates a previously introduced algorithm called Particle-Based Rapid Incremental Smoother within the framework of state inference and parameter identification in Jump Markov Non-Linear System. It is applied to the recursive form of two well-known Maximum Likelihood based algorithms who face the common challenge of online computation of smoothed additive functionals in order to accomplish the task of model parameter estimation. This work extends our previous contributions on identification of Markovian switching systems with the goal to reduce the computational complexity. A benchmark problem is used to illustrate the results.

Place, publisher, year, edition, pages
IEEE, 2017. p. 714-718
Keywords [en]
parameter estimation, system indentification, jump Markov systems, particle filtering
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:liu:diva-144023DOI: 10.1109/CAMSAP.2017.8313089ISI: 000428438100033ISBN: 9781538612514 (electronic)ISBN: 9781538612507 ISBN: 9781538612521 OAI: oai:DiVA.org:liu-144023DiVA, id: diva2:1170438
Conference
2017 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Curacao, Dutch Antilles, Dec. 10-13, 2017
Projects
ELLIIT - The Linköping‐Lund Initiative on IT and Mobile CommunicationsAvailable from: 2018-01-03 Created: 2018-01-03 Last updated: 2018-07-06Bibliographically approved

Open Access in DiVA

fulltext(766 kB)12 downloads
File information
File name FULLTEXT01.pdfFile size 766 kBChecksum SHA-512
7e0d1baad43d78da2caefca476c1a9b658e92f5443685501c3356e478e9f9e4a850aa456ced2e87491cad2ea646af30fccd8f368793e56ff7f1d0f86783fe5dc
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Fritsche, CarstenGustafsson, Fredrik

Search in DiVA

By author/editor
Fritsche, CarstenGustafsson, Fredrik
By organisation
Automatic ControlFaculty of Science & Engineering
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 12 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 54 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf