liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Balancing the radar and long wavelength infrared signature properties in concept analysis of combat aircraft - A proof of concept
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Physics. Linköping University, Faculty of Science & Engineering. Saab AB, SE-58188 Linkoping, Sweden.
Swedish Def University, Sweden; National Def University, Finland.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering. Swedish Def Research Agency, Sweden.
2017 (English)In: Aerospace Science and Technology, ISSN 1270-9638, E-ISSN 1626-3219, Vol. 71, p. 733-741Article in journal (Refereed) Published
Abstract [en]

Designing combat aircraft with high military effectiveness, affordability and military suitability requires balancing the efforts of many engineering disciplines during all phases of the development. One particular challenge is aircraft survivability, the aircrafts ability to avoid or withstand hostile actions. Signature management is one way of increasing the survivability by improving the ability to avoid detection. Here, the long-wave infrared and radar signatures are studied simultaneously in a mission context. By establishing a system of systems approach at mission system level, the risk of sub optimization at a technical level is greatly reduced. A relevant scenario is presented where the aim is to incapacitate an air-defense system using three different tactics: A low-altitude cruise missile option, a low and medium altitude combat aircraft option. The technical sub-models, i.e. the properties of the signatures, the weapons and the sensors are modeled to a level suitable for early concept development. The results from the scenario simulations are useful for a relative comparison of properties. Depending on the situation, first detection is made by either radar or infrared sensors. Although the modeling is basic, the complexity of the infrared signature and detection chain is demonstrated and possible pivot points for the balancing of radar and IR signature requirements are identified. The evaluation methodology can be used for qualitative evaluation of aircraft concepts at different design phases, provided that the technical models are adapted to a suitable level of detail. (C) 2017 Elsevier Masson SAS. All rights reserved.

Place, publisher, year, edition, pages
ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER , 2017. Vol. 71, p. 733-741
Keywords [en]
Radar; Infrared; Signatures; Scenario; Evaluation
National Category
Aerospace Engineering
Identifiers
URN: urn:nbn:se:liu:diva-144148DOI: 10.1016/j.ast.2017.10.022ISI: 000418313700067OAI: oai:DiVA.org:liu-144148DiVA, id: diva2:1172315
Note

Funding Agencies|Saab Aeronautics; Swedish Defence University; Swedish Armed Forces

Available from: 2018-01-09 Created: 2018-01-09 Last updated: 2020-02-17
In thesis
1. Sensor and Signature Modeling for Aircraft Conceptual Development
Open this publication in new window or tab >>Sensor and Signature Modeling for Aircraft Conceptual Development
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The aircraft design process has several phases, the first of which is conceptual design. In this phase, models describing an aircraft concept’s properties are used to evaluate its function and identify designs that meet given requirements. Fighter aircraft are generally expected to be capable of communicating, delivering munitions and gathering data about their environment to gain situational awareness. The ability to avoid detection by hostile sensors can also be important, depending on the aircraft’s role.

The design process of the aircraft itself has usually focused on an aircraft’s flight performance and ability to carry loads, e.g. munitions and extra fuel. While acceleration, rate of turn, maximum speed, and operational range are important parameters, the success of military missions also depends on sensor capabilities and signature levels. However, sensor installation and signature reduction measures can affect the aircraft and its flight performance. Whether an aircraft concept fulfills the requirements given is evaluated using simulations in appropriate scenarios. The concept’s performance is assessed using models of aircraft properties, weapon properties, sensor capabilities and signature levels. Models of the aircraft properties are usually connected dynamically, and respond to changes in such things as the size of the concept. However, sensor and signature models are often the result of a separate optimization process and are only statically connected to the aircraft model. The complete aircraft model can be improved by introducing sensor and signature models that dynamically describe both their functions, and their impact on the aircraft. Concurrent design of all the aircraft properties may improve the quality of results from scenario simulations. When models used in simulations contain parameters coupled to each other, analysis of the resulting data is particularly important because that is what supports a decision-maker’s design choice.

Sensor and signature models, in some cases combined with flight performance models, have been used to test methodologies intended for use in conceptual aircraft design. The results show that even seemingly simple models can produce results that can make a significant contribution to the aircraft design process.

Abstract [sv]

Det första steget vid flygplansutveckling är konceptfasen, där alternativa förslag på flygplan representeras av modeller som beskriver det tänkta flygplanets egenskaper. Modellerna används i simuleringar som genomförs i olika scenarion, för att utvärdera och rangordna de olika flygplanskonceptens förmågor. För stridsflygplan är det viktigt att kunna manövrera och leverera vapen såväl som att skaffa och upprätthålla en situationsuppfattning. Beroende på flygplanens roll i uppdraget kan det också vara en prioritet att undgå upptäckt från fiendens sensorer.

Konceptsfasen är vanligtvis inriktad mot flygplanets prestanda och kapacitet att bära last, exempelvis extra bränsle och vapen. Förmågan att framgångsrikt genomföra ett militärt uppdrag beror på egenskaper som har att göra med svängprestanda, acceleration, topphastighet och räckvidd såväl som sensorernas egenskaper och flygplanets signaturnivå. Simuleringar av scenarion med modeller av flygplanets egenskaper, vapenprestanda, sensoregenskaper och signaturnivåer, möjliggör värdering av ett flygplanskoncepts förmåga att genomföra sitt uppdrag på ett tillfredsställande sätt. De modeller som beskriver flygegenskaperna är vanligtvis sammankopplade och ändringar i exempelvis flygplanets storlek påverkar alla modeller. Sensor- och signaturmodeller, är däremot ofta ett resultat av en separat konstruktionsprocess och inte kopplade till exempelvis flygegenskaper. Genom att införa modeller av sensorprestanda och signaturnivåer som är dynamiskt kopplade till flygplanets modeller finns det möjligheter att förbättra konceptanalysen. Resultatet ger möjligheter att få mer fullständigt resultat från simuleringarna i scenarion, vilket i sin tur ger beslutsfattare ett bättre underlag.

I den här avhandlingen presenteras modeller av sensorer och signaturnivåer, avsedda att användas vid konceptkonstruktion av flygplan. Vissa av modellerna är kopplade till modeller för flygprestanda. Resultaten visar att även till synes enkla modeller ger resultat som kan utgöra ett användbart bidrag till konstruktionsprocessen.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2020. p. 66
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2021
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:liu:diva-163595 (URN)10.3384/diss.diva-163595 (DOI)9789179299866 (ISBN)
Public defence
2020-04-06, Nobel, B Building, Campus Valla, Linköping, 09:15 (English)
Opponent
Supervisors
Available from: 2020-02-20 Created: 2020-02-17 Last updated: 2020-03-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Marcus, CarinaÅkerlind, Christina
By organisation
Theoretical PhysicsFaculty of Science & EngineeringThin Film Physics
In the same journal
Aerospace Science and Technology
Aerospace Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 333 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf